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Abstract
In this review, we discuss the results of recent experimental studies of the
low-temperature electron dephasing time (τφ) in metal and semiconductor
mesoscopic structures. A major focus of this review is on the use of weak
localization, and other quantum-interference-related phenomena, to determine
the value of τφ in systems of different dimensionality and with different levels of
disorder. Significant attention is devoted to a discussion of three-dimensional
metal films, in which dephasing is found to predominantly arise from the
influence of electron–phonon (e–ph) scattering. Both the temperature and
electron mean free path dependences of τφ that result from this scattering
mechanism are found to be sensitive to the microscopic quality and degree
of disorder in the sample. The results of these studies are compared with the
predictions of recent theories for the e–ph interaction. We conclude that, in
spite of progress in the theory for this scattering mechanism, our understanding
of the e–ph interaction remains incomplete. We also discuss the origins
of decoherence in low-diffusivity metal films, close to the metal–insulator
transition, in which evidence for a crossover of the inelastic scattering, from
e–ph to ‘critical’ electron–electron (e–e) scattering, is observed. Electron–
electron scattering is also found to be the dominant source of dephasing in
experimental studies of semiconductor quantum wires, in which the effects of
both large- and small-energy-transfer scattering must be taken into account.
The latter, Nyquist, mechanism is the stronger effect at a few kelvins, and
may be viewed as arising from fluctuations in the electromagnetic background,
generated by the thermal motion of electrons. At higher temperatures, however,
a crossover to inelastic e–e scattering typically occurs; and evidence for this
large-energy-transfer process has been found at temperatures as high as 30 K.
Electron–electron interactions are also thought to play an important role in
dephasing in ballistic quantum dots, and the results of recent experiments in
this area are reviewed. A common feature of experiments, in both dirty metals
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and ballistic and quasi-ballistic semiconductors, is found to be the observation
of an unexpected ‘saturation’ of the dephasing time at temperatures below a
kelvin or so. The possible origins of this saturation are discussed, with an
emphasis on recent experimental investigations of this effect.
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1. Introduction

The electron dephasing time, τφ , is a quantity of fundamental interest and importance in metal
and semiconductor mesoscopic structures. Both theoretical and experimental investigations of
τφ in various (one, two, three, and zero) dimensions have advanced significantly over the last
20 years. These advances have largely been due to the observation, in mesoscopic metals and
semiconductors, of a variety of prominent quantum-interference phenomena. Among these
phenomena are included weak localization in films and wires [1–7], universal conductance
fluctuations in disordered quantum wires [8], and Aharonov–Bohm oscillations [9], and
persistent currents [10], in mesoscopic rings. In many cases, these quantum-interference
phenomena are observed in weakly disordered systems, in which electrons are able to undergo
multiple elastic scattering at low temperatures, before the coherence of their wavefunction is
randomized. The electron dephasing time τφ (together with the spin–orbit scattering time τso)
totally controls the magnitude and temperature (T ) dependence of the quantum-interference
effects4, and is given by [3, 7]

1

τφ(T , l)
= 1

τ 0
φ (l)

+
1

τi(T , l)
, (1)

4 Strictly speaking, with universal conductance fluctuations and the Aharonov–Bohm effect, there is also the influence
of thermal averaging that needs to be taken into account.
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where l is the electron elastic mean free path, τ 0
φ is presumed to be independent of temperature,

and τi is the relevant inelastic electron scattering time(s) in question5. As is evident from
equation (1), the temperature dependence of τφ is controlled entirely by the temperature
dependence of τi, while τ 0

φ determines the value of the dephasing time in the limit of very low
temperatures. In addition to being temperature dependent, τi is also dependent on the disorder
(i.e. electron elastic mean free path l). The zero-temperature dephasing time, τ 0

φ ≡ τφ(T → 0),
has remained the subject of a long-standing puzzle, which has very recently attracted vigorous
renewed interest and is currently under much theoretical and experimental debate. The central
question is whether τ 0

φ should reach a finite or infinite value as the temperature tends to
zero. Among the current opinions that exist on this matter, it has been suggested that the
saturated value of τ 0

φ should depend on the specific sample geometry [11], the level of disorder
in the structure [12, 13], the microscopic qualities of the defects [14, 15], or e–e scattering
mediated by the magnetic exchange interaction [16]. In addition, it is also widely accepted
that the temperature and disorder behaviour of both τi and τ 0

φ are very sensitive to the effective
dimensionality of the sample [7, 11].

Since the realization of weak-localization effects, the dependence of the dephasing time
on temperature and the mean free path has been widely studied in various mesoscopic systems,
including metals [1, 7], semiconductors [17], and superconductors [7]. The establishment of
the electron dephasing (or phase-breaking) length:

Lφ = √
Dτφ (2)

as the key length scale in the quantum-interference phenomena has prompted extensive
investigations in systems of differing effective dimensionality. The electron diffusion constant
D = v2

F τ/d in diffusive systems, where vF is the Fermi velocity, τ is the electron elastic mean
free time, and d is the effective dimensionality of the system under study. The diffusion constant
appears in the problem as a consequence of the diffusive motion of conduction electrons in
the weakly disordered regime. This is the regime where perturbative calculations are valid
and theoretical predictions can be quantitatively compared with experimental measurements.
(Later on, we will discuss the results of experiments performed on quasi-ballistic quantum
wires, and ballistic quantum dots, in which systems the assumption of diffusive motion may no
longer hold.) Usually, the dephasing length Lφ can be a (few) thousand ångström(s) or longer
at liquid-helium temperatures in disordered metals [18,19], and it can be even longer in high-
mobility mesoscopic semiconductors [20]. Therefore, films less than a few hundred ångströms
thick will reveal two-dimensional behaviour with regard to the quantum-interference effects,
while narrow channels with widths less than this will exhibit one-dimensional behaviour.
Recently, progress has even been made in the study of zero-dimensional systems, such as
semiconductor quantum dots [20] and granular metal particles [21], whose spatial dimensions
can all be smaller than the dephasing length.

Owing to extensive theoretical and experimental studies of weak-localization, and other
quantum-interference, effects over the course of the past two decades, it is now known that the
microscopic processes that determine τφ can essentially be ascribed to four different origins.
It is furthermore understood that a number of these dephasing processes may coexist in
real systems, with one or two mechanisms typically dominating, dependent on the system
dimensionality, the level of disorder, and the measurement temperature. The four important
dephasing mechanisms, and the particular experimental circumstances under which these might
dominate, are categorized as follows.

5 In the case of superconductors, and at temperatures very close to the transition temperature Tc , τi is essentially the
dephasing time due to superconducting fluctuations 1/τi ≈ 1/τe−sf , while at temperatures well above Tc , τi is limited
by e–ph scattering in three dimensions, 1/τi ≈ 1/τep , and by e–e scattering in one and two dimensions, 1/τi ≈ 1/τee .
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(a) In three-dimensional, weakly disordered, conductors (Lφ < Lx, Ly, Lz), electron–
phonon (e–ph) scattering is the sole dominant inelastic dephasing process [22–24],
i.e. 1/τi(T , l) ≈ 1/τep(T , l). Thus far, three-dimensional weak-localization effects
have been studied using thick granular films [25–27], thick quench-condensed metal
films [28], doped semiconductors [17], metallic glasses [29, 30], and polycrystalline
metallic alloys [31, 32]. However, the behaviour of 1/τep in the presence of disorder
in mesoscopic three-dimensional systems is still not fully understood. In particular,
experimental results vary widely and are frequently in disagreement with theoretical
predictions [22, 33].

(b) In three-dimensional, strongly disordered, conductors, e–e scattering is very sensitive to
the critical (as opposed to diffusive) current dynamics, resulting in the e–e scattering rate
1/τEE dominating over the e–ph scattering rate [34], i.e., 1/τi(T , l) ≈ 1/τEE(T , l). Thus
far, theoretical and experimental studies of the ‘critical’ e–e scattering time τEE(T , l) in
conductors near the mobility edge have not attracted much attention. (We use the notation
τEE to distinguish the ‘critical’ e–e scattering time near the Anderson transition from the
more familiar Nyquist and inelastic e–e scattering time, usually denoted by τee.)

(c) In metals and semiconductors at low temperatures, small-energy-transfer (‘quasielastic’)
e–e scattering is the dominant dephasing process, giving rise to 1/τee ∝ T in two
dimensions, and 1/τee ∝ T 2/3 in one dimension [35]. Among the four dephasing
processes discussed here, this ‘Nyquist’ dephasing mechanism is the most widely studied
and best understood [10]. Physically, such quasielastic e–e collisions are equivalent to the
interaction of an electron with the fluctuating electromagnetic field produced by all the
other electrons, i.e. dephasing by the equilibrium Nyquist noise.

(d) In mesoscopic systems at very low temperatures, a ‘saturation’ of the electron dephasing
rate, 1/τφ(T , l) ≈ 1/τ 0

φ (l), is often observed [11, 12, 36, 37]. The underlying physics
of this extremely weakly temperature-dependent dephasing time is currently the source
of intensive debate [14]. While some authors argue that the saturation is caused by
extrinsic mechanisms, such as magnetic spin–spin scattering [16, 38–40], hot-electron
effects [24, 41], electromagnetic noise sources [35, 42] or non-equilibrium effects [43],
other authors yet argue for an intrinsic quantum origin, such as the effect of e–e interaction
in a disordered metal [44,45]. In addition, the role of the interaction between conduction
electrons and dynamical defects, such as two-level systems (TLS), has also been widely
investigated [14, 15].

In this review paper, we will concentrate our discussions on available theoretical
predictions, and experimental results for the different low-temperature dephasing mechanisms.
While we will present experimental results for all four mechanisms identified above6, our main
interest will focus on reviewing recent studies of the e–ph scattering time τep, the ‘critical’ e–e
scattering time τEE , and the saturation of the dephasing time τ 0

φ . We shall focus on a discussion
of the inelastic electron dephasing times in mesoscopic metals and semiconductors, with
significantly different material characteristics. Both the temperature and disorder dependences
of τep, τEE , and τ 0

φ will be discussed. We shall see that:

(a) In the case of the e–ph scattering time, a significant body of experimental results, obtained
for various materials, do not support the existence of a universal dependence of 1/τep on
disorder. As for the temperature dependence of 1/τep, experiments frequently (but not

6 The spin–orbit scattering time τso, which is another important timescale in quantum-interference phenomena [1,46],
will only be mentioned where necessary. The microscopic origin and physical properties of τso in metals have recently
been extensively explored by Bergmann and co-workers [47].
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always) reveal an unexpected T 2 dependence, in disagreement with standard theoretical
concepts [48] regarding the e–ph interaction in disordered metals.

(b) In the case of 1/τEE , a linear temperature dependence, as well as the absence of
any disorder dependence have been found in very low-diffusivity bulk systems, i.e.
1/τEE ∝ T l0. Such behaviour can be qualitatively understood in terms of the current
theory for inelastic e–e scattering in three-dimensional conductors near the mobility edge.
Consequently, there is a crossover of inelastic electron dephasing in disordered systems,
from e–ph scattering to critical e–e scattering, as the level of disorder is increased and the
systems move significantly toward the Anderson transition.

(c) We will address the issue of the ‘saturation’ behaviour of the electron dephasing
time at very low temperatures. The issue of whether there might be an intrinsic
microscopic dephasing process causing a finite τ 0

φ at very low temperatures is extremely
controversial and is still open to debate. We will discuss several systematic experimental
observations, involving different materials (metals and semiconductors), and transport
regimes (diffusive, quasi-ballistic and ballistic). We shall see that these studies place
important physical constraints on the development of a successful theory that will
ultimately be able to account for the saturation.

1.1. Dephasing, dephasing time τφ , and inelastic scattering time τi

The dephasing (also called phase-breaking or decoherence) time τφ in mesoscopic physics
is the timescale for a conduction electron to stay in a given exact one-electron energy
eigenstate in the presence of static impurities. The transitions between these eigenstates
are due to e–ph, e–e, electron–dynamical defect (e.g. TLS, or defects possessing some
internal degree of freedom), or electron–magnetic-impurity interactions [14]. In the context of
quantum-transport phenomena such as weak localization, universal conductance fluctuations,
and various quantum-interference oscillations (i.e. h/e and h/2e oscillations in connected
structures), τφ determines the energy and length scales at which quantum behaviour is
seen. A considerable amount of theoretical and experimental study has been directed toward
understanding the mechanisms responsible for the loss of phase coherence and the dependences
of these mechanisms on temperature, disorder, and dimensionality. It is well established that,
in the diffusive regime, τφ (and also τi) is very sensitive to the system dimensionality.

While τφ relates directly to the dephasing processes, τi is an inelastic quasiparticle lifetime
related to the inverse of the one-electron self-energy. These two timescales are therefore
closely connected, but not necessarily the same. The difference between τi and τφ arises
from processes with small energy transfer. This difference is particularly pronounced for
the Nyquist e–e contribution in reduced dimensions. Physically, the small-energy-transfer
e–e scattering is equivalent to the interaction of a conduction electron with the fluctuating
electromagnetic field, produced by all other surrounding electrons in the system. This thermal,
fluctuating (i.e. randomly time- and space-dependent), electric field is called the equilibrium
Nyquist or Johnson noise. Due to the statistical nature of these fluctuations, such a scattering
is different for each electron, thus the electronic ensemble loses it coherence [49]. In the case
of a lower-dimensional system, and in the diffusive regime, we can have τφ � τi, with 1/τφ

being dominated by very small-energy scattering processes. (That is, small-energy-transfer
processes do not much affect 1/τi.) For example, in two dimensions, the inelastic e–e dephasing
time 1/τφ,ee ∝ T , while the e–e scattering time 1/τi,ee ∝ T lnT , at low temperatures. In one
dimension, on the other hand, 1/τφ,ee ∝ T 2/3 and 1/τi,ee ∝ T 1/2. Usually, the more weakly
temperature-dependent Nyquist e–e scattering therefore dominates τφ at temperature below a
few kelvins, and e–ph scattering dominates at even higher temperatures (in metals).
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The situation is completely different in a three-dimensional system and in the diffusive
regime, where we can have τφ ≈ τi for e–ph scattering. This approximate equality of τφ and
τi for three-dimensional systems follows primarily from the fact that large-energy-transfer
(∼kBT ) scattering dominates both τφ and τi in bulks. For the e–ph contribution to inelastic
scattering, processes with small energy transfer are suppressed by the e–ph vertex [50]. As
a consequence, one expects that the e–ph dephasing time and inelastic e–ph scattering time
should be almost identical: 1/τφ,ep ≈ 1/τi,ep. Typically, one finds 1/τep ≈ 1/τφ ∝ T p with
the exponent of temperature p ≈ 2–4, depending on the system specifics and dimensionality.
Notably, in this case, it is also true that τφ ≈ τi for e–e scattering. However, the three-
dimensional e–e process is usually not seen in experiment. This is mainly because the crossover
from the e–ph process to the e–e process in three dimensions should usually occur only at the
experimentally unexplored sub-mK regime. (Besides, as T → 0, τφ can often be dominated
by the saturated time τ 0

φ , and thus an evaluation of the temperature-dependent contribution to
τφ can be less certain.)

1.2. Objective of this review

Before discussing the organization of this review paper, it is worthwhile mentioning our
motivations for writing an experimental review on recent developments on the dephasing
time in mesoscopic systems. Twenty years have now passed since the first discovery of weak-
localization effects in disordered conductors and, while a number of careful studies have
been performed in this area, a new generation of young investigators have also been attracted
to this exciting field. For this reason, we feel that an updated experimental review might
be helpful for introducing these researchers to the current status of this field. In addition,
since the pioneering studies of quantum-interference effects, new experimental results have
continued to be reported in the literature, providing very useful quantitative information on the
temperature and disorder dependence of τφ . Systematic experimental studies, as a function
of a wide range of sample parameters, can now be undertaken, due to the ability to perform
highly controlled measurements on well-characterized samples. Consequently, over the course
of the past decade, a central theme of research in this area has become the quantitative study of
dephasing mechanisms, rather than the study of the quantum-interference effects themselves,
which provided the main theme of interest in the early years of this field. Finally, we note
that, while many excellent reviews already exist concerned with a discussion of quantum-
interference effects [1–7], there has essentially thus far been no review that has focused on the
properties of the electron dephasing times. We also believe it is worthwhile to discuss together
both mesoscopic metals and semiconductors, because the forms of inherent, microscopic
physics of the electron dephasing in these two kinds of material are very similar and closely
related. With these various issues in mind, we have been stimulated to undertake this current
review.

The organization of the rest of this review is as follows. In section 2, we discuss the use of
magneto-transport studies to extract the various dephasing times. It is hoped that this section
will be of use to those researchers who are interested in the problem of electron dephasing,
but who are not very familiar with quantum-interference effects. In particular, we elaborate on
several novel examples to illustrate that the extracted electron dephasing times can be extremely
reliable. In section 3, we concentrate on the electron dephasing times in mesoscopic disordered
metals, focusing especially on three-dimensional polycrystalline metals. In section 4, we focus
on measurements of the electron dephasing time in semiconductor quantum wires and dots, in
which electron transport is typically much cleaner than in metals. In section 5, we present our
conclusions, and attempt to provide a consistent overview of the various studies performed in
different metal and semiconductor mesoscopic structures.



Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures R507

2. Determining the dephasing time in mesoscopic systems

In this section we briefly review the different techniques that are used to determine the value
of the dephasing time τφ in metal and semiconductor mesoscopic structures, such as quantum
wires and dots. The main experimental technique here involves extracting estimates for the
dephasing time from either the weak-localization lineshape, or the conductance fluctuations,
observed in the magnetoresistance of these structures at liquid-helium temperatures and below.

Weak localization of conduction electrons in disordered metals was first theoretically
predicted, and experimentally observed, in 1979, and has remained the subject of
continued interest since this time. In addition to more conventional mesoscopic metals
and semiconductors, weak localization has also been studied in novel materials such as
quasicrystals [51], carbon nanotubes [52], and high-temperature superconductors [53]. The
weak localization is due to coherent backscattering of two, time-reversed, partial-electron-
wave amplitudes, which traverse a closed loop and return to the origin within a timescale of τφ .
Physically, τφ is the average timescale over which the phase coherence of the conduction
electron is maintained. It was soon realized that any time-reversal-invariance ‘breakers’,
including e–ph, e–e, and magnetic spin-flip scattering, would suppress weak localization. In
1980, Hikami et al [46] considered how the weak-localization effects might be suppressed
by an external magnetic field. In particular, they calculated the magnetoresistance for two
dimensions. Their result was explicitly expressed in terms of the various electron dephasing
times. Their work immediately prompted extensive experimental investigations of the low-field
magnetoresistance of thin metal films and semiconductor inversion layers. Soon afterward,
the magnetoresistance in one dimension [54, 55], and that in three dimensions [56, 57],
were also calculated. Thus, in principle, the low-temperature value of τφ can be extracted
from weak-localization measurements, which therefore represent a powerful diagnostic tool.
This tool has now been applied to various materials systems, including normal metals,
superconductors, and semiconductors. While studies in all dimensions are possible, most
experimental measurements reported in the literature have been focused on two dimensions.
This is mainly because one-dimensional samples are less readily experimentally available,
while the weak-localization effects in three dimensions are much less pronounced than in
lower dimensions, rendering it previously less appealing to study these effects using either one
or three dimensions.

In this section, we first explain how τφ can be determined from magnetoresistance
measurements. We then use a few examples to indicate the feasibility of this experimental
method, demonstrating that such studies can lead to very reliable and quantitative estimates
of τφ , over a wide range of temperature and disorder7. This degree of reliability is not always
achievable using other experimental methods. For instance, we will demonstrate that the
inelastic electron scattering time τi measured in a given material system accurately mimics
the relevant microscopic inelastic process as the sample is made larger and as it changes
progressively from one, to two, and, finally, to three dimensions. More precisely, it is
known that the temperature and disorder dependences of τi in a given material system depend
strongly on the sample dimensionality. In lower dimensions, the Nyquist e–e scattering
dominates the dephasing process at low temperatures, while in three dimensions, e–ph
scattering is the strongest source of dephasing. In addition, we will show that, in the case

7 Strictly speaking, it should be noted that the magnetoresistance measurements actually yield very reliable and
quantitative estimates of the dephasing length. The value of the dephasing time is then computed through equation (2),
using the independently determined diffusion constant D. (The experimental method for evaluating D is discussed
in section 3.) Although the estimate for D in metals and alloys with complex Fermi surfaces can be subject to an
uncertainty of a factor of ∼2, the temperature and disorder dependence of τφ extracted in this manner is highly reliable.
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of a superconducting sample, the weak-localization studies correctly determine the transient
lifetime of the superconducting fluctuations at temperatures closely above the superconducting
transition temperature, Tc. A few other examples will also be discussed, to demonstrate that
weak-localization effects are now sufficiently understood and can be used as a powerful probe
of the electron scattering times. Indeed, estimates for Lφ determined from weak-localization
measurements have been compared with the results of studies of conductance fluctuations,
and Aharonov–Bohm oscillations in single rings, and have been found to be in reasonable
agreement with one another [58].

2.1. Low-field magnetoresistance

2.1.1. Weak localization in disordered metals and semiconductors. Over the past two
decades, it has come to be understood that weak-localization effects result in noticeable
‘anomalous’ magnetoresistance in disordered conductors at low temperatures and at low
magnetic fields [1,3–5,7,59,60]. An analysis of these magnetoresistance curves has been found
in turn to provide quantitative information of the various electron dephasing mechanisms. In
practice, even a weak magnetic field B can cause a noticeable phase difference between the two
complementary partial-wave amplitudes involved in coherent backscattering, since these time-
reversed paths can be thousands of ångströms long (Lφ � l) at liquid-helium temperatures.
Here, a weak magnetic field means one for which the classical magnetoresistance due to the
Lorentz force is negligibly small8. On the other hand, it is understood that one is dealing
with external magnetic fields B > Bφ = h̄/4πDτφ such that the weak-localization effects
are suppressed. Since the quantum-interference effects in reduced dimensions have been
extensively reviewed in the literature, we will focus mainly on mesoscopic three-dimensional
systems to illustrate the physics and experimental method of the weak-localization studies.

In a mesoscopic three-dimensional conductor, the weak-localization magnetoresistance
at a given temperature T , �R(B) = R(B) − R(0), was calculated by Fukuyama and
Hoshino [57]. In their calculations, in addition to the inelastic electron scattering, spin–orbit
scattering and Zeeman splitting of spin subbands have also been taken into consideration. For
superconducting materials at temperatures above the superconducting transition temperature,
Tc, �R(B) has also been calculated [62, 63]. In this latter case, effects resulting from
fluctuational superconductivity also need to be considered. When concerned with a temperature
region close to, but still sufficiently far from the immediate vicinity of Tc (i.e. 2πkB(T −Tc) �
h̄/τφ), one must consider Maki–Thompson superconducting fluctuation effects. (On the
other hand, in the immediate vicinity of Tc, one must also include a contribution from the
Aslamazov–Larkin term [64].) In particular, it should be noted that Larkin has shown that
the superconducting fluctuation contribution to �R(B) corresponding to the Maki–Thompson
diagram has the same magnetic field dependence as the weak-localization contribution in the
absence of spin–orbit scattering, but with opposite sign and with a coefficient called βLarkin(T )

which diverges at Tc [62, 65]. The parameter βLarkin(T ) is called the Larkin e–e attraction
strength. The work of Larkin therefore nicely connects seemingly unrelated areas of research,
i.e. weak-localization and fluctuational superconductivity.

8 The magnitude of the classical magnetoresistance caused by the Lorentz force [61], �R(B)/R(0) ≈ (ωcτ)2, where
ωc = eB/m is the cyclotron frequency, is negligibly small in typical disordered conductors. For l ≈ 10–100 Å, this
classical magnetoresistance is of the order of 10−8–10−6 in a magnetic field of 1 T. This is typically 3 to 4 orders
of magnitude smaller than the weak-localization magnetoresistance. Moreover, this classical magnetoresistance is
always positive while the weak-localization magnetoresistance can be either positive or negative, depending on the
relative strength of the inelastic and spin–orbit scattering processes. These features distinguish the ‘anomalous’
weak-localization magnetoresistance from the normal classical magnetoresistance.
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The total three-dimensional magnetoresistivity at a given temperature, �ρ(B) =
ρ(B) − ρ(0), including both the weak-localization effects and Maki–Thompson term is given
by [57, 62, 65]

�ρ(B)

ρ2(0)
= e2

2π2h̄

√
eB

h̄

(
1

2
√

1 − γ

[
f3

(
B

B−

)
− f3

(
B

B+

)]
− f3

(
B

B2

)
+ βLarkin(T )f3

(
B

Bφ

)

−
√

4Bso

3B

[
1√

1 − γ
(
√

t+ − √
t−) +

√
t −

√
t + 1

])
, (3)

where

t = 3Bφ

2(2Bso − B0)
, γ =

[
3g∗µBB

4eD(2Bso − B0)

]2

, t± = t + 1
2 (1 ±

√
1 − γ ),

Bφ = Bi + B0, B2 = Bi + 1
3B0 + 4

3Bso, B± = Bφ + 1
3 (2Bso − B0)(1 ±

√
1 − γ ).

Here g∗ is the electron Landé g-factor, and µB is the Bohr magneton. The characteristic
fields Bj are defined by Bj = h̄/4eDτj , where j = i, so, and 0 refer to the inelastic, spin–
orbit, and temperature-independent residual scattering times (fields). The exact expression
for the function f3 in equation (3) is an infinite series which was originally calculated
by Kawabata [56]. In analysing the experimental results one can instead reliably use an
approximate expression for f3 given by Baxter et al [66], which was shown to be accurate to
be better than 0.1% for all arguments y. The approximate expression derived by Baxter et al
is [66]

f3(y) ≈ 2

[√
2 +

1

y
−

√
1

y

]
−

[(
1

2
+

1

y

)−1/2

+

(
3

2
+

1

y

)−1/2]
+

1

48

(
2.03 +

1

y

)−3/2

.

The term βLarkin(T )f3(B/Bφ) in equation (3) is the Maki–Thompson superconducting
fluctuation contribution. This term is calculated in the weak-field limit 4eDB < 2πkB(T −Tc).
For larger magnetic fields, this term becomes a constant [63]. The value of the coefficient
βLarkin depends on temperature, but is not affected by spin–orbit scattering since this term
is concerned with the singlet part of the e–e interaction in the Cooper channel [62, 65]. This
contribution is suppressed in exactly the same manner as the weak-localization effects are in the
presence of spin–spin scattering. Because βLarkin has a logarithmic temperature dependence,
this contribution can be significant even at temperatures well above Tc. Since fluctuational
superconductivity is progressively suppressed by an increasing magnetic field, the Maki–
Thompson contribution to �ρ(B) is always positive, in contrast to the contribution from the
weak-localization effects (equation (3) except the βLarkinf3(B/Bφ) term), which can be either
positive or negative, depending on the ratio τso/τi and the strength of B. In the limit τso/τi � 1,
the magnetoresistivity is negative. In the opposite limit, τso/τi � 1, the magnetoresistivity is
positive for all magnetic fields. The latter effect is called weak anti-localization.

Measurements of βLarkin(T /Tc) have been reported for both polycrystalline and amorphous
metals, including two-dimensional [67, 68] and three-dimensional [31, 69] samples. It is now
well established that the Larkin theory can predict a very accurate value of βLarkin(T /Tc),
once the magnitude of the superconducting transition temperature Tc for a given sample is
determined (from an independent measurement).

As mentioned, equation (3) reveals that the sign and magnitude of the magnetoresistivity
is totally determined by two parameters: τφ (i.e. Bφ) and τso (i.e. Bso), of which only τφ is
temperature dependent. We notice that the definition Bφ = Bi + B0 leads directly to the
expression 1/τφ(T ) = 1/τi(T ) + 1/τ 0

φ defined in equation (1). Generally speaking, the size of
the magnetoresistivity increases with decreasing temperature as τφ becomes correspondingly
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longer. In the limit of very low temperatures, 1/τi can become extremely small and may
then allow 1/τ 0

φ (if finite) to dominate. Under such circumstances, the magnetoresistivity
curves might overlap closely and the weak-localization contribution saturates (see discussion
in section 3 below).

2.1.2. One-dimensional weak localization in metal and semiconductor quantum wires.
As was discussed in the preceding sections, weak localization is a quantum-mechanical
enhancement of the resistance that arises due to the effect of coherent backscattering. While
we have thus far focused our discussion of this effect on its observation in bulk metals, and
thin metallic films, weak localization is also widely observed in metallic and semiconductor
quantum wires. An important feature in these systems is that the conductance corrections
provided by this effect exhibit a one-dimensional character when the dephasing length of
the electrons exceeds the width of the wire (Lφ > W ). Similarly to in the discussion
of weak localization in higher dimensions, however, application of a weak magnetic field
breaks time-reversal symmetry and suppresses the weak localization, giving rise to a negative
magnetoresistance. For a diffusive channel of length L and width W , and in the case where
the effects of spin–orbit scattering can safely be neglected, the magnetoconductance lineshape
associated with this suppression is predicted to take the form [54, 70]

�G(B) = − 2

L

e2

h

[
1

Dτφ

+
1

DτB

]−1/2

. (4)

In this equation, �G(B) is the change in conductance induced by applying a magnetic field
B, D is the diffusion constant, and the timescale τB is defined such that

τB = 3

4

l4
m

W 2D
, lm =

√
h̄

eB
. (5)

By fitting the form of the low-field magnetoresistance to equation (4), values for the dephasing
time can therefore be extracted. In figure 1, we show the results of magnetoresistance
measurements of a GaAs/AlGaAs quantum wire [71]. The growth of the magnitude of the
negative magnetoresistance with decreasing temperature reflects the associated increase in the
dephasing time, and the solid curves through the experimental data represent the results of fits
to the form of equation (4). It is clear that these fits account well for the magnetoresistance
variations observed in experiment, thereby allowing one to extract reliable estimates for the
dephasing time.

While weak-localization studies can be used to extract estimates for the dephasing time in
quantum wires, considerable care needs to be taken when applying the predictions of theory
to the results of experiment. An important feature in the weak-localization theory is the
assumption of diffusive electron motion, which is easily violated in semiconductor quantum
wires [72]. The high electron mobilities characteristic of these systems can result in values
for the electron mean free path l that easily exceed several microns [73]. Charge diffusion in
quantum wires realized from such materials may therefore be quasi-ballistic in nature, with
diffusive motion along the length of the wire but ballistic carrier transport in the transverse
direction. An important effect that may arise in such structures is flux cancellation of ballistic
trajectories that backscatter via a series of diffuse boundary scattering events. The basic
idea is that such trajectories enclose zero effective flux, so an enhanced magnetic field is
required to suppress weak localization. Beenakker and van Houten have discussed this effect
in considerable detail [70, 72, 74] and show that, in the presence of this flux cancellation,
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Figure 1. The temperature dependence of the magnitude of the negative magnetoresistance
�R/R(0) = [R(B) − R(0)]/R(0) due to one-dimensional weak localization in a GaAs/AlGaAs
quantum wire of length 62 µm and width 0.2 µm. This figure was reproduced with permission
from [71]. Copyright 1987 by the American Physical Society.

equation (5) becomes modified according to

τB =




C1
l4
m

W 3vF

, l2
m � WL

C2
l2
ml

W 2vF

, Wl � l2
m � W 2.

(6)

In these equations, vF is the Fermi velocity, and C1 and C2 are constants whose values
depend on the nature of the boundary scattering in the wire (C1 = 9.5 and C2 = 24/5,
while C1 = 4π and C2 = 3, for specular, and diffusive, scattering, respectively). With these
definitions, the weak-localization magnetoconductance takes the form

�G(B) = − 2

L

e2

h

[(
1

Dτφ

+
1

DτB

)−1/2

−
(

1

Dτφ

+
1

DτB

+
1

Dτ

)−1/2]
. (7)

The main result of the flux-cancellation effect is to enhance the critical magnetic field required
to suppress weak localization. For a diffusive channel with no flux cancellation, this field scale
may be defined as [70]

Bcrit = h̄
√

3

eWLφ

. (8)

For a quasi-ballistic channel, however, this magnetic field scale is modified according to

Bcrit =




h̄

eW

[
C1

WvF τφ

]1/2

, l2
m � Wl

h̄

eW

C2l

W 2vF τφ

, Wl � l2
m � W 2.

(9)

From a comparison of equations (8) and (9), we see that the enhancement of the critical field
Bcrit is of order (l/W)2 � 1 in quasi-ballistic channels. Good agreement of experiment
with these modified predictions has been found in a number of studies of quasi-ballistic, high-
mobility, wires [75–77].

In addition to the effect of flux cancellation, it is also necessary to consider further
modifications to the weak-localization magnetoresistance in mesoscopic quantum wires, whose
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length may be comparable to the phase-breaking length. The weak-localization lineshape
in such structures has been found to be strongly influenced by the geometric properties of
their connecting probes, which result can be understood by considering that phase coherence
of electrons decays over a length scale comparable to Lφ inside these regions [78]. By
extending the usual theory for weak localization, quantitative predictions for the influence
of specific probe geometries on the magnitude of the weak-localization magnetoresistance can
be obtained [78].

2.2. The study of magneto-transport as a powerful probe of the dephasing time

In the above sections, we have discussed the underlying physics and theoretical predictions of
weak-localization theory. Particularly, the weak-localization predictions for one dimension
and three dimensions have been explicitly presented. The theoretical predictions for the
magnetoresistance in two dimensions are well documented in the literature [3,4,7] and will not
be presented here. We only notice that, in reduced dimensions, the relative orientation of the
magnetic field to the film plane or wire axis is very important, because the magnetoresistances
are highly anisotropic, due to the quantum-interference nature of the weak-localization
effects. Owing to the accessibility of quantitative theoretical predictions such as equations (3)
and (7), extensive measurements have been performed on various materials involving different
dimensionalities. In short, the weak-localization predictions are found to describe very well
the rich experimental observations. Moreover, over the years, weak-localization research has
become a mature field and has proven to be the most powerful probe of τφ in mesoscopic metals
and semiconductors9. As a matter of fact, the weak-localization effects are so well understood
that these effects can now be ‘tuned’ in laboratories. For instance, the relative importance of
different electron dephasing times can be adjusted by using tailor-made samples. Therefore,
the sign and magnitude of the magnetoresistance in a given sample system can be manipulated
in a controlled manner. To illustrate this point, we examine the systematic change in the
magnetoresistance behaviour of a series of three-dimensional, tin-doped, Ti73Al27 alloys in
figures 2 and 3. Figure 2 shows a plot of the normalized magnetoresistivities �ρ(B)/ρ2(0) as
a function of magnetic field B for a polycrystalline Ti70Al27Sn3 alloy at several measurement
temperatures. At low magnetic fields, the magnetoresistivities are positive at all measurement
temperatures. At higher magnetic fields, the magnetoresistivities decrease with increasing B

and become negative (not shown) if the applied magnetic field and/or measurement temperature
is sufficiently high. The magnitude of �ρ(B)/ρ(0) is of the order of several parts in 10−4.
This figure clearly indicates that equation (3) can account well for the experimental results.
Inspection of figure 2 reveals that the magnetoresistivities are larger at lower measurement
temperatures, because τφ increases with decreasing T . (We notice that, in many cases, the
magnetoresistivity might cease to grow with decreasing temperature as T → 0; see section 3.)

Next, to further demonstrate the reliability of the weak-localization predictions, we plot
in figure 3(a) the normalized magnetoresistivities at a given temperature of 3.0 K for a series
of three-dimensional, tin-doped Ti73−xAl27Snx alloys whose concentration of tin x varies
progressively from 0 to 5. For this range of x, the alloys remain single phased and the residual
resistivities of the samples are essentially the same, i.e., these alloys contain a similar level
of disorder [82]. The parent Ti73Al27 phase is chosen because Ti possesses a moderately

9 Extensions of the weak-localization theoretical predictions have also been carried out to deal with, for example, the
negative magnetoresistance in the variable-range-hopping regime [79], the magnetoresistance in granular metals [80],
and in ballistic quantum dots [20]. Such extensions make possible experimental extraction of τφ in cases beyond the
weakly disordered regime. (Later on, however, we will notice and discuss why weak localization in ballistic dots may
not be reliable.)
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Figure 2. Normalized magnetoresistivities �ρ/ρ2(0) = [ρ(B) − ρ(0)]/ρ2(0) as a function of
magnetic field for the three-dimensional Ti70Al27Sn3 alloy at (from the top down) 2.00, 5.00,
8.00, 10.0, 15.0, and 20.0 K. The solid curves are the predictions of equation (3). This figure was
reproduced with permission from [82]. Copyright 1999 by the American Physical Society.

Figure 3. (a) Normalized magnetoresistivities �ρ/ρ2(0) = [ρ(B) − ρ(0)]/ρ2(0) as a function
of magnetic field for three-dimensional Ti73−xAl27Snx alloys at 3.0 K and with (from the bottom
up) x ≈ 0.5, 1.0, 1.5, 3.0, 4.0, and 5.0 [81]. (b) Spin–orbit scattering rate 1/τso as a function of x

for Ti73−xAl27Snx alloys. The straight line is a guide to the eye. This figure was reproduced with
permission from [82]. Copyright 1999 by the American Physical Society.

small atomic number Z = 22, while Al has an even smaller Z = 13. Therefore, the spin–
orbit scattering is expected to be moderately weak in this alloy, leaving plenty of room for
increasing the spin–orbit scattering rate 1/τso by ‘controlled’ doping of heavy atoms. (That
the spin–orbit scattering is moderately weak in the parent Ti73Al27 phase is evident in the
shape of the magnetoresistivity curves shown in figure 2.) This is one of the reasons that Sn
is used as the impurity atom, for Sn has an atomic number Z = 50. Notice that this Z = 50
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is sufficiently heavier than that of Ti while it is still not so large as that of, for example, Au
(Z = 79) or Bi (Z = 83). Since it is known that 1/τso increases rapidly with increasing atomic
number as 1/τso ∝ Z4 [83] or Z5 [47], a small amount of Sn doping will thus, on one hand,
significantly increase 1/τso but, on the other hand, leave other electronic properties of the alloy
not appreciably affected. This experiment thus allows a systematic investigation of the effect
of spin–orbit scattering from the moderate to the strong limit where 1/τso � 1/τφ .

At any temperature, and for any given alloy composition, values of τφ and τso are extracted
by fitting the magnetoresistance to the form of equation (3). Because τso is a temperature-
independent material property, τφ is then the only adjustable parameter in the comparison of
the theoretical predictions with the experimental curves measured at different temperatures. In
reality, a single value of τso is used to describe the whole set of magnetoresistivity curves for a
given sample, resulting in a fairly reliable estimate of τso. Thus, the temperature dependence of
the magnetoresistivity is totally controlled by the sole varying parameter τφ . If a good number
of magnetoresistivity curves are measured at different temperatures, the variation of τφ with
temperature can thus be accurately determined. This, in turn, results in a reliable determination
of the exponent of temperature p for the responsible inelastic electron scattering process in
question. (It is generally accepted that 1/τi ∝ T p over the limited temperature range accessible
in a typical experiment.) An accurate determination of the value of p is not only indispensable
for identifying the responsible inelastic process but also crucial for a good understanding of
the microscopic interactions between the electrons and low-lying excitations.

Figure 3(b) shows the extracted spin–orbit scattering rate 1/τso as a function of the
concentration of tin x for the series of Ti73−xAl27Snx alloys whose magnetoresistivities are
considered in figures 2 and 3(a). This figure clearly indicates that the spin–orbit scattering
rate increases linearly with x. A linear variation of 1/τso with the concentration of heavy
impurities, at low impurity concentrations, has been established in previous measurements
where the level of disorder in the samples was kept fixed [84, 85]. Such linearity provides a
convincing consistency check for the established experimental method of sample fabrication
and data analysis. It also provides a critical test of the theoretical predictions of equation (3).

Apart from the three-dimensional examples discussed in figures 2 and 3, the reliability and
flexibility of the weak-localization studies in extracting values of τφ can further be illustrated
with several other examples, as we now discuss below.

2.2.1. Inelastic scattering times in different dimensions. At liquid-helium temperatures
and somewhat higher, inelastic processes (e–ph scattering and e–e scattering) are the most
important and dominating sources for the dephasing of conduction electron wave amplitudes.
Existing efforts of weak-localization studies in the literature have provided very informative and
consistent results in this regard. To illustrate the great success of such studies in extracting τi, we
discuss in this subsection the measured inelastic electron scattering times in Au–Pd alloys with
different dimensionalities. Gold–palladium alloys are well-known prototypical disordered
metals, and have been widely used in weak-localization studies over the years [11,36,86–91].
As a matter of fact, the first experimental realizations of weak-localization effects in one
and two dimensions were performed using small-diameter wires [92] and thin films [93]
made of Au–Pd. Three-dimensional weak-localization effects in Au–Pd alloys have also been
investigated recently [94]. In studies of this type (one, two, and three dimensions), low-field
magnetoresistances are measured at different temperatures and τφ(T ) is extracted. One of
the advantages of choosing Au–Pd as the material system is that this metal possesses very
strong spin–orbit scattering, and thus, according to the weak-localization predictions, τφ is the
only varying parameter in the comparison of theory with experiment, making the extraction
of τφ extremely reliable. (Close inspection of equation (3) reveals that, in the limit of strong
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Figure 4. (a) The total dephasing time τφ (closed circles) and the inelastic dephasing time τi (open
circles) as a function of temperature for a 460 Å diameter Au–Pd wire. The solid line drawn through
the data for τi shows a T −2/3 temperature dependence, while the dashed line is drawn proportional
to T −1. The solid line through the data for τφ is a guide to the eye. (b) The total dephasing time τφ

(closed circles) and the inelastic dephasing time τi (open circles) as a function of temperature for a
130 Å thick Au–Pd film. The solid curve drawn through the data for τi shows a T −1 temperature
dependence, while the solid curve through the data for τφ is a guide to the eye. These figures were
reproduced with permission from [88]. Copyright 1987 by the American Physical Society.

spin–orbit scattering, the predicted magnetoresistances are insensitive to the value of τso; see,
for example, [1, 3, 4, 7].)

Figures 4(a), (b), and 5(a) show three plots of the variations of τφ with temperature
for Au–Pd small-diameter wires, thin films, and thick films. Inspection of figures 4(a), (b),
and 5(a) indicates that, in all three cases, τφ first increases with decreasing temperature,
until the temperature dependence becomes extremely weak at very low temperatures. The
increase of τφ with reducing T at temperatures above a (few) kelvins depends markedly on
sample quality, and is associated with the weakening of inelastic processes as the temperature
decreases. By comparing the measured τφ(T ) with equation (1), the zero-temperature 1/τ 0

φ

and the temperature-dependent 1/τi can be deduced. Then, on the basis of the information
obtained about the temperature and disorder dependences of 1/τi, one can unambiguously
identify the relevant inelastic electron processes in question. The values of τi extracted in
this way for a Au–Pd wire and a Au–Pd film are plotted in figures 4(a) and (b), respectively.
One clearly sees that τi possesses different temperature behaviours in different dimensions,
namely, T −2/3 in one-dimensional wires (figure 4(a)) while τi ∝ T −1 in two-dimensional films
(figure 4(b)).

In the case of bulk samples (figure 5(a)), the measured τφ(T ) is also fitted to equation (1)
assuming a single, significant inelastic process, i.e.,

1

τφ(T , l)
= 1

τ 0
φ

+ Ai(l)T
p, (10)

where Ai(l) characterizes the strength of the dominating inelastic electron–low-lying-
excitation interaction process, and p is the exponent of temperature for that inelastic scattering
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Figure 5. (a) The total dephasing rate 1/τφ as a function of temperature for a 5120 Å thick Au–Pd
film. The solid, long-dashed, and short-dashed curves are least-squares fits to equation (10) with
the temperature exponent p fixed at 2, 3, and 4, respectively. Ai is the fitting parameter, and
1/τ 0

φ = 1.3×1011 s−1. (b) Variation of the e–ph scattering rate at 10 K, 1/τep(10 K), with electron
mean free path l for several three-dimensional Au50Pd50 thick films. This figure was reproduced
with permission from [94]. Copyright 1998 by the American Physical Society.

rate. Figure 5(a) indicates that the measured τφ in thick Au–Pd can only be described by an
exponent p = 2. On the other hand, the experimental data on τφ cannot be described by
equation (10) using either p = 3 or 4. This observation of an inelastic scattering rate having
an exponent of temperature p = 2 suggests that, in three dimensions, the relevant inelastic
process is due to e–ph scattering. (In lower-dimensional metals, however, it is often necessary
to include both e–e scattering and e–ph scattering processes.)

Taken together, the results of figures 4(a), (b), and 5(a) indicate a systematic change of p

with increasing sample dimensionality. This observation is totally expected and understood. It
is now known that the exponent of temperature p should be equal to 2/3 and 1 in one and two
dimensions, respectively. Such values of p can be well accounted for by small-energy-transfer
e–e scattering which dominates inelastic scattering in reduced dimensions [3, 4, 7]. On the
other hand, p should be equal to (or �) 2 in three dimensions [95,96], because e–ph scattering
is the dominating inelastic process in bulk materials [22, 24]. This observation of a clear
crossover of the inelastic scattering from the Nyquist e–e interaction to e–ph interaction as the
system dimensionality increases demonstrates convincingly the reliability and consistency of
the weak-localization studies in inferring τφ and, thus, τi and τ 0

φ . It is worthwhile mentioning
that the inelastic lifetimes of conduction electrons have also been determined from other
experimental methods [97]. The results are in line with those deduced from weak-localization
measurements.

2.2.2. Electron–superconducting-fluctuation scattering time. In the case of superconducting
samples, superconducting fluctuation effects can contribute to the low-field magnetoresistance,
especially when the measurement temperatures approach the superconducting transition
temperature Tc of the sample. Then, a marked ‘divergence’ of 1/τi is observed. Physically,
what one measures is the transient lifetime of the superconducting fluctuations which are
continuously created and annihilated at temperatures just above Tc.

To illustrate the effect of superconducting fluctuations on the magnetoresistivities and
the value of τi, we compare two dilute superconducting titanium alloys studied in [31]:
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Figure 6. (a) Normalized magnetoresistivities �ρ/ρ2(0) = [ρ(B)− ρ(0)]/ρ2(0) as a function of
magnetic field for three-dimensional disordered superconducting alloys: (a) the Ti92.8Al7.15Co0.05
alloy at (from the bottom up) 8.00, 3.02, 2.06, 1.85, and 1.70 K; and (b) the Ti92.8Al7.2 alloy at (from
the bottom up) 10.0, 6.00, 3.00, and 1.73 K. The solid curves are the weak-localization predictions
of equation (3). This figure was reproduced with permission from [31]. Copyright 1994 by the
American Physical Society.

Ti92.8Al7.2 and Ti92.8Al7.15Co0.05. These two alloys contain similar levels of disorder, with
residual resistivities ρ(10 K) ≈ 91 and 94 µ	 cm for the former and the latter, respectively.
Previously, it has been found [31, 98] that the addition of a small amount of Co in Ti
results in a remarkable increase in Tc from that of pure Ti (≈0.4 K). Therefore, fluctuational
superconductivity is markedly enhanced in the Co-doped sample at low temperatures,
compared with that in the undoped ‘control’ sample Ti92.8Al7.2. Experimentally, this
enhancement is directly manifested in the relatively large low-field magnetoresistivities.
Figure 6(a) shows the normalized magnetoresistivities �ρ(B)/ρ2(0) as a function of magnetic
field for Ti92.8Al7.15Co0.05 at several temperatures. This figure indicates that the magnitudes of
�ρ(B)/ρ2(0) are substantially increased from those in Ti92.8Al7.2 (figure 6(b)). For example,
�ρ(B)/ρ2(0) at 1.7 K in Ti92.8Al7.15Co0.05 is a factor of more than six times larger than the
corresponding magnetoresistivity in the parent Ti92.8Al7.2. This increase is due to the enhanced
superconductivity in this Co-doped alloy. Physically, the magnetoresistivity behaviour with B

in figure 6(a) is characteristic of the weak-localization and Maki–Thompson superconducting
fluctuation effects predicted by equation (3).

Quantitative analysis indicates that, with the addition of a minor amount of Co, both the
low-temperature values of the Larkin e–e attraction strength βLarkin, defined in equation (3),
and 1/τi increase profoundly relative to the corresponding values for Ti92.8Al7.2. (On the other
hand, the value of τso remains unchanged to within the experimental uncertainties. This is
because Co is only slightly heavier than Ti, and since the doping level of Co is extremely low.)
In the range of approximately 1.7–4 K, the value of βLarkin in Ti92.8Al7.2 shows only a slight
increase, while the value in Ti92.8Al7.15Co0.05 shows a rapid increase [31]. This rapid increase
in βLarkin in the Co-doped sample results in large magnetoresistivities as seen in figure 6(a). The
value of βLarkin ≈ 5.3 at 1.7 K for Ti92.8Al7.15Co0.05 is a factor ∼6.5 higher than that (≈0.8) for
Ti92.8Al7.2. In short, this experiment, using both the control alloy Ti92.8Al7.2 (where the Maki–
Thompson contribution is relatively unimportant) and the comparison alloy Ti92.8Al7.15Co0.05

(where the Maki–Thompson contribution is significant), demonstrates elegantly the reliability
and flexibility of the weak-localization studies.
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Figure 7. The electron dephasing rate 1/τφ as a function of temperature for a disordered
superconducting Ti88Sn12 bulk alloy. The superconducting transition temperature Tc for this
particular sample is about 2.1 K. This figure was reproduced with permission from [99].

Figure 7 shows the variation of 1/τφ with temperature for a disordered superconducting
Ti88Sn12 bulk alloy [99]. (In this case, 1/τφ ≈ 1/τi in the temperature range of interest.)
This figure indicates that 1/τφ (i.e. 1/τi) possesses a quadratic temperature dependence at
temperatures above about 2.5 K, implying the inelastic scattering is due to e–ph relaxation.
This figure also shows that 1/τφ (or 1/τi) exhibits a rapid deviation from the T 2 temperature
dependence at temperatures below about 2.3 K; the value of 1/τφ (or 1/τi) increases abruptly
from that as would be extrapolated from the T 2 dependence at higher temperatures. The
existence of this ‘diverging’ behaviour of 1/τφ (or 1/τi) as the measurement temperature
approaches Tc (≈2.1–2.2 K for this particular sample) is understood. Such a pronounced
increase in 1/τi with decreasing temperature is caused by the increased effectiveness of the
e–e interaction in the Cooper channel near Tc. Physically, as the temperature approaches
Tc, the inelastic scattering rate 1/τi will diverge because of the increasing probability that an
electron will meet another electron of nearly opposite momentum and spin and condense
into a superconducting fluctuation [3, 7]. A diverging 1/τi at temperatures just above
Tc has been observed in thin films [68, 100], and thick fibres [101]. Theoretically, the
scattering of conduction electrons from superconducting fluctuations has been treated in two
dimensions [102]. However, no theoretical prediction is available for three dimensions. A
recent discussion on this subject is given by Rosenbaum et al [103].

2.2.3. Spin-flip scattering time. Thus far, we have considered mainly the spatial part of the
wave amplitude of the conduction electrons, and have largely neglected their spin component.
(We have briefly discussed the role of spin–orbit scattering on weak-localization effects in
figures 3(a) and (b).) When the spin degree of freedom of the conduction electrons is taken into
consideration, the quantum-interference effects are sensitive to both spin–orbit scattering and
magnetic spin–spin scattering. In disordered conductors, spin–orbit scattering can originate
from the scattering of conduction electrons off heavy impurity atoms and/or surfaces. On
the other hand, spin–spin scattering can originate from scattering of conduction electrons off
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magnetic impurity atoms and/or the local moments that might be induced on the surfaces due
to oxidation. Systematic measurements of these two kinds of scattering time have advanced
greatly over the years [2,47,104–108]. It is now established that both the spin–orbit scattering
time τso and spin–spin scattering time τs can be accurately determined from weak-localization
measurements. Furthermore, it is observed that the values of τso (and τs) determined from weak-
localization studies are consistent with those values determined from recent spin-polarized
transport measurements [109]. It is also found that the values of τso based on the weak-
localization measurements on thin films [110] are in order-of-magnitude agreement with
those extracted from measurements of the electron g-factor distributions in nanometre-scale
particles [111]. This consistency of the spin-flip scattering times independently determined
from these distinct experiments (i.e., weak-localization, spin-polarized transport, and g-factor
distribution studies) is encouraging. It demonstrates the reliability of the weak-localization
studies in extracting the values of the electron scattering times.

In quantum-interference studies, we are often involved with (very) dilute magnetic
impurities. In the presence of very dilute magnetic impurities, but without the Kondo effect,
magnetic impurities yield in the Born approximation a temperature-independent dephasing.
In this case, the dephasing process does not involve energy exchange between the electron and
the ‘paramagnetic’ environment. On the other hand, the problem of a single Kondo impurity is
much more sophisticated. On account of the Kondo effect, i.e. the repeated interaction between
the conduction electrons and the magnetic impurity, spin-flip processes are strongly enhanced
and produce a maximum of dephasing rate at the Kondo temperature TK [105,106]. Far below
TK , the Fermi-liquid theory of the Kondo effect predicts that the spin-flip scattering disappears
and is replaced by an inelastic scattering time proportional to T −2. At zero temperature,
the magnetic moment is suppressed (the single Kondo impurity forms a singlet state with
the conduction electrons) and neither yields spin-flip scattering, nor acts as a random field.
Therefore, the dephasing scattering caused by magnetic impurities can be either scattering of
the conduction electrons according to the exchange interaction, JS · s, or, at low temperature
(�TK ), an induced inelastic scattering due to the magnetic impurity.

Experiments designed to directly measure magnetic scattering rates have been performed
by Bergmann and co-workers [105], and Van Haesendonck et al [106]. These elegant
experiments provide new insights into the long-standing Kondo problem. Since the magnetic
screening of the Kondo impurity extends over distances of the order of h̄vF /kBTK , interaction
between the magnetic impurities is non-negligible in real experiments. Consequently, an
inelastic scattering time proportional to T −1/2, instead of T −2, is measured [105, 112].

In low magnetic fields, the quantum-interference effects are greatly suppressed due to
the presence of a finite magnetic spin–spin scattering 1/τs , as just mentioned. In high
magnetic fields of order g∗µBB ≈ kBT , there is a saturation of the magnetic moments of the
paramagnetic impurities, resulting in a strong decrease in 1/τs , and thus the dephasing length
together with the quantum-interference effects recover their value characteristic of the undoped
system. In the case of spin glasses, there are similar effects. Studies in this direction are used
as an original probe of the nature of the spin-glass order which is still very controversial [113].
By the same token, studies in this direction might shed light on clarifying the origin(s) of the
widely observed saturation of τ 0

φ in experiments (see section 3).

2.3. Universal conductance fluctuations in metals and semiconductors

2.3.1. Universal conductance fluctuations in metal and semiconductor quantum wires. In
mesoscopic quantum wires, fabricated on a length scale comparable to the phase-breaking
length, another opportunity for extracting estimates for the dephasing time is provided by
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Figure 8. Universal conductance fluctuations in a Au ring at several different temperatures. This
figure was reproduced with permission from [114]. Copyright 1987 by the American Physical
Society.

the observation of universal conductance fluctuations [9, 114, 115]. The fluctuations appear
as noise-like structure in the low-temperature magnetoresistance (figure 8), although their
fingerprint is found to be highly reproducible as long as the wire is maintained at cryogenic
temperatures. Reminiscent of weak localization, these fluctuations also result from a quantum-
interference effect, although the nature of this interference is very different to that responsible
for weak localization. In particular, the interference process responsible for the fluctuations
is not restricted to pairs of backscattered trajectories (figure 9). Rather, the idea is that
interference between electron partial waves that propagate between the same points via different
semiclassical trajectories does not average out to zero in these mesoscopic systems. The total
phase of these waves rather varies as the magnetic field is varied and it is this process that
is reflected directly in the conductance. The detailed magneto-fingerprint of the fluctuations
is sensitive to the position of specific impurities within the wire, in contrast to the case for
macroscopic conductors whose conductance typically only depends on the degree of disorder
in the sample. Fluctuations may alternatively arise by varying the Fermi energy of the carriers,
by means of a change to a suitable gate voltage [116], or when the impurity profile in the
sample varies with time, as can occur when certain defects are able to instantaneously trap or
emit carriers [117].

At absolute zero, the amplitude of the conductance fluctuations is predicted to take the
universal value of order e2/h, independent of either the degree of disorder or the system
size [118, 119]. At non-zero temperatures, however, the presence of decoherence reduces the
fluctuation amplitude from its universal value, and this effect may be exploited to obtain an
estimate for the dephasing time. For a diffusive quantum wire, the root-mean-square amplitude
of the conductance fluctuations is predicted to vary as [115]

δgrms =




LT

L

√
Lφ

L
, LT � Lφ � L,(

Lφ

L

)3/2

, Lφ � LT � L.

(11)
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A
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Figure 9. A schematic illustration illustrating the difference between the types of diffusing
trajectory that give rise to weak localization (left) and universal conductance fluctuations (right).
Weak localization results from the interference of time-reversed pairs of paths that start from some
initial point (A) and diffuse back to this same point by undergoing a series of elastic scattering
events. Universal conductance fluctuations, on the other hand, result from interference involving
weak-localization-like trajectories, as well as interference between electron partial waves that
propagate between different points of the sample (A and B), along distinct paths.

In these equations, the conductance fluctuation amplitude is measured in units of e2/h, and
LT = √

Dh̄/kBT is the thermal diffusion length. This latter quantity essentially defines
the length scale over which electron partial waves decohere due to thermal smearing of their
energy. According to these relations, thermal smearing and inelastic scattering influence the
amplitude of the fluctuations in quite distinct fashions. In particular, when the phase-breaking
length is the shorter scale, the effects of thermal smearing are completely cut-off by inelastic
scattering. The quantum wire can then be broken into a series of uncorrelated segments, each
of length Lφ , whose overall fluctuation is described by classical averaging [115]:

δgrms(L) = δgrms(Lφ)

(
Lφ

L

)3/2

≈ e2

h

(
Lφ

L

)3/2

. (12)

In contrast, when the thermal diffusion length is smaller than the phase-breaking length, both
inelastic scattering and thermal smearing are effective in reducing the fluctuation amplitude.
This situation is unique to one-dimensional conductors, in which the rapid decay of their
correlation function ensures that two states with energies differing by more than a correlation
energy may be treated as statistically independent [115]. This correlation energy is defined as

Ec = h̄D

L2
, (13)

and is the energy difference required between two partial waves, such that on diffusing
across the wire their accumulated phase change is of order unity. At finite temperatures, the
number of independent energies involved in conduction over a single phase-coherent region is
therefore [70]

NE = kBT

Ec(Lφ)
=

(
Lφ

LT

)2

. (14)

Due to classical averaging, the amplitude of the fluctuations associated with this region will
be reduced by a factor of N

−1/2
E from the universal value. The total fluctuation amplitude,

measured across the entire length of the wire, will therefore be given by the lower form of
equation (11), with additional reduction by a factor of LT /Lφ . Closer inspection shows that
this in fact corresponds to the upper form of equation (11).

Experimental investigations of the universal conductance fluctuations are hindered by
the fact that, in contrast to the asymptotic behaviour discussed above, most experiments
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are performed in a regime where the thermal diffusion and phase-breaking lengths are of
similar magnitude. Nonetheless, an interpolation formula with an accuracy of approximately
10% has been derived to describe the temperature-dependent decay of the fluctuations in this
regime [74]:

δg = gsgv

2

√
12

βUCF

(
Lφ

L

)3/2[
1 +

9

2π

(
Lφ

LT

)2]−1/2

. (15)

Here, gs and gv are the spin- and valley-degeneracy factors, respectively. The factor βUCF

is equal to two in the presence of time-reversal symmetry, but is reduced to one when
this symmetry is broken. The influence of time-reversal symmetry enters here since the
perturbative calculation of the fluctuation amplitude contains contributions from two distinct
impurity scattering processes, the particle–particle and particle–hole ladders [115]. While
the amplitudes of these processes are identical at zero magnetic field, the breaking of time-
reversal symmetry rapidly quenches the particle–particle contribution, in a similar fashion
to that observed in weak localization. This leaves only the contribution from particle–hole
diffusion, which is found to be insensitive to magnetic field while the Landau quantization
remains unresolved, as a result of which the fluctuations in most metals persist to very high
magnetic fields with unaltered characteristics [9]. The same cannot be said for semiconductor
systems, however, in which well-defined Landau quantization is achieved at sub-tesla fields,
giving rise to dramatic modification of the fluctuation characteristics [120–127]. Nonetheless,
over magnetic field ranges where the Landau quantization is not yet resolved, study of the
amplitude of the conductance fluctuations has been widely used as a means to determine the
dephasing time.

2.3.2. Conductance fluctuations in ballistic quantum dots. While the theories of weak
localization and universal conductance fluctuations have been developed for disordered
conductors, in which electrons undergo diffusive motion in one or more dimensions, recent
advances in semiconductor microfabrication technology now allow the realization of ballistic
quantum dots. These structures are typically realized using the split-gate technique [128], in
which metal gates with a fine-line pattern defined by electron-beam lithography are deposited
on the surface of a high-mobility heterojunction. Application of a negative bias to the gates
depletes electrons from underneath them, with the result that current flow from source to drain
is forced to occur via the narrow gap defined between the gates. Examples of such split-gate
quantum dots are shown in figure 10 and consist of a sub-micron-sized central cavity that is
connected to external reservoirs by means of quantum-point-contact leads. These leads are
typically configured to support a number of propagating one-dimensional modes, while the size
of the central cavity is much smaller than the transport mean free path. Current flow through
such dots therefore involves a process in which electrons are injected into the dot and undergo
multiple boundary scattering before finally escaping to the reservoirs. At low temperature,
phase coherence is maintained over long distances and the magnetoresistance is then found to
exhibit reproducible fluctuations (figure 11) [130]. While these fluctuations appear reminiscent
of those observed in disordered quantum wires, they are instead understood to result from a
magnetic modulation of the interference of ballistically scattered electron partial waves within
the dot (figure 12) [131]. The dots also typically exhibit a peak in their magnetoresistance, near
zero magnetic field, and this has similarly been argued to result from the ballistic analogue of
weak localization [132]. The details of both the fluctuations and the zero-field peak have been
suggested to depend on the nature of the scattering within the dots (chaotic versus regular),
for which reason the study of open dots has attracted much interest as an experimental probe
of quantum chaos (for reviews, see [20, 133] and [134]).
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1 µµm 1 µµm

Figure 10. Examples of split-gate quantum dots. The metal gates correspond to the lighter regions
and are deposited onto the surface of a GaAs/AlGaAs heterojunction. This figure was reproduced
with permission from [129]. Copyright 1999 by the American Physical Society.

Figure 11. The magnetoresistance of stadium-shaped (top) and circular-shaped dots is found to
exhibit pronounced and reproducible fluctuations at low temperatures. This figure was reproduced
with permission from [130]. Copyright 1992 by the American Physical Society.

Figure 12. The fluctuations observed in the magnetoconductance of quantum dots are understood
to result from a modulation by the magnetic field of interference involving electron partial waves
that undergo multiple boundary scattering within the dot.
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Figure 13. The main figure shows magnetoconductance traces measured in a quantum dot. The
four traces shown using thin lines were obtained with different voltages applied to the shape-
distorting gates indicated in the inset. The solid line was obtained by averaging the results of 47
such measurements to obtain a well-defined resistance peak at zero magnetic field. The inset shows
the dot in which the measurements were performed. The total area of this dot is 4 µm2. This figure
was reproduced with permission from [137]. Copyright 1998 by the American Physical Society.

A number of authors have exploited the features in the magnetoconductance of open dots,
to extract estimates for the electron dephasing time τφ . Marcus and co-workers [135–137]
extract values for this parameter by assuming that electron motion in the dots may be taken to
be fully chaotic (i.e. fully hyperbolic). For such chaotic dots, random-matrix theory predicts a
ballistic weak-localization peak at zero magnetic field, whose amplitude is given by [138,139]

δgWL = e2

h

N

2N + Nφ

. (16)

In this equation, N is the number of propagating modes in the dot leads (this number typically
ranges from ∼1 to 6 in experiment), while Nφ is the number of modes in a fictitious lead that
is assumed to couple the dot to a phase-randomizing reservoir [135, 140]. Nφ is related to the
dephasing time according to

Nφ = 2πh̄

τφ�
= 2πh̄

�
γφ. (17)

Here, � is the average level spacing in the dot and is defined as � = 2πh̄2/m∗Ad , where Ad

is the area of the dot. In order to extract values for the dephasing time from equation (16), an
ensemble of conductance traces is required to compute the amplitude of the weak-localization
peak, and in figure 13 we show such an ensemble that was created by varying the voltages
applied to the gates identified in the inset to the figure. After averaging over these different
traces, a well-defined resistance peak is recovered at zero magnetic field, and from the amplitude
of this peak an estimate of the dephasing time may be obtained [137].



Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures R525

Figure 14. The main panel shows the Fourier power spectrum of the conductance fluctuation traces
shown in the inset. Solid lines through the data points correspond to fits to the form of equation (18).
The conductance fluctuations shown in the inset were obtained at the same temperature (16 mK),
at two different gate voltage values. The dot geometry studied was similar to the stadium structure
shown in the inset to figure 11. This figure was reproduced with permission from [135]. Copyright
1993 by the American Physical Society.

In an alternative approach to the above, experimental estimates for the dephasing time
have also been obtained from an analysis of the magnetoconductance fluctuations in the
dots [135,136]. For fully chaotic transport in the dots, the power spectrum of their fluctuations
is predicted to vary as [131, 141]

S(fB) = S0e−2παhfB/e. (18)

In this equation, fB is the magnetic frequency (in units of per tesla) and α is a characteristic
inverse area, related to the effective escape rate from the dot. This escape rate is broken down
into two components, a first due to escape via the two leads, plus a second that represents the
effective loss of coherent carriers from the dot. The total escape rate is therefore written as

γeff = γφ + γesc, (19)

where γesc is the rate at which electrons leave the dot via either of its leads. In analogy with
equation (17), the escape rate via a lead that supports N modes may be written as

2πh̄

�
N (20)

and, with this definition, the total rate of escape from the dot becomes

γeff = 2πh̄

�
(2N + Nφ). (21)

Since the characteristic inverse area α that appears in equation (18) depends on the presence
of coherent electrons in the dot, we may write the following relation:

α2 = κ̄(2N + Nφ), (22)

where κ̄ is a proportionality constant [136]. In figure 14, we show the power spectrum of the
conductance fluctuations, measured in the same quantum dot at two gate voltages [135]. The
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Figure 15. Conductance fluctuations measured in a quantum dot at two distinct temperatures (the
higher-temperature trace has been shifted upwards by 0.75 e2/h for clarity). In both cases, the
traces were obtained by subtracting a smoothed polynomial fit from the raw magnetoconductance
data. This figure was reproduced with permission from [142]. Copyright 1995 by the American
Physical Society.

solid lines that pass through the data are fits to the form of equation (21) and allow the value
of α to be determined. By assuming the dephasing time to be independent of the number of
modes in the leads, the value of κ̄ may be determined for any dot by plotting the variation of
α as a function of the number of modes in the leads. With the values of α and κ̄ established in
this manner, the value of the dephasing time at any temperature may then be extracted [136].

In an alternative approach to those above, Bird and co-workers [142–145] have determined
values for the phase-breaking time using a model originally developed to describe the properties
of the magnetoconductance fluctuations in quasi-ballistic quantum wires [125]. This approach
does not require the assumption of chaotic scattering in the dot but instead determines the
dephasing time from the magnetic field dependence of the conductance fluctuations in the
edge-state regime. In studies of this type, it is typically found that the basic field scale of the
conductance fluctuations increases once the magnetic field is increased such that the cyclotron-
orbit size fits within the dot (figure 15). In this regime, fluctuations are thought to arise from
interference between different skipping orbits, whose coupling is predominantly generated by
scattering in the point contact leads. To compute the characteristic magnetic flux enclosed
between these orbits, we consider the area that a single orbit encloses as it skips coherently
along the walls of the dot [146]:

Aφ = N̄
πr2

c

2
= vF τφrc, (23)

where N̄ is the number of bounces the electron makes before losing phase coherence, rc is the
cyclotron radius (=h̄kF /eB), and vF is the Fermi velocity. Given this definition, we obtain a
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Figure 16. The magnetic field dependence of the correlation field of the conductance fluctuations
in a quantum dot. The two different data sets were obtained for different values of the split-gate
voltage (R0 here denotes the zero-field resistance of the dot). This figure was reproduced with
permission from [285].

simple expression relating the average period of the fluctuations to the magnetic field:

Bc(B) = φ0

Aφ

= h

eAφ

= 8π2m∗

hk2
F τφ

B. (24)

In this equation, the field scale Bc is more rigorously defined as the correlation field [115]
of the conductance fluctuations, and may be obtained directly from their correlation function.
According to equation (24), when the phase-breaking time is independent of magnetic field,
the average period of fluctuation should increase as a linear function of the applied field.
Such behaviour is indeed found to be typical of experiment (figure 16) and from the slope of
the resulting straight-line fit it is possible to use equation (24) to obtain an estimate for the
phase-breaking time.

2.4. Reliability of dephasing times extracted from magneto-transport studies

We have discussed in this section the inelastic scattering times in different dimensionalities,
the electron–superconducting-fluctuation scattering times in superconductors just above Tc,
and the spin-flip scattering times in the presence of local moments. These examples deal
with a wide range of different physical phenomena involving very different materials and
different dimensionalities. Our discussion should suffice to convey to the reader the reliability,
flexibility, and consistency of weak-localization studies in disordered metals. More precisely,
the accessibility of explicit weak-localization expressions for the temperature dependence
of the resistance and, particularly, the explicit expressions for the magnetoresistance, allow
direct comparisons of the theory with experiment. Such quantitative comparison, in turn,
has contributed enormously to advances in this area of research. This simultaneous progress,
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in both theory and experiment, is rarely found in other areas of research in condensed-matter
physics. Indeed, we are now able to obtain very quantitative estimates of the various dephasing
times, including the e–ph scattering time τep, the critical e–e scattering time τEE , the Nyquist
e–e scattering time τee, and the zero-temperature dephasing time τ 0

φ . Such information
had not been available before the appreciation of weak-localization effects. Quantitative
information on the temperature and disorder dependence of the dephasing times can shed
light on the underlying mechanisms of the microscopic interactions between electrons and
phonons, electrons and electrons, and electrons and other low-lying excitations. Finally, it
is worth noting that the weak-localization magnetoresistance can also be used as a probe of
magnetic field inhomogeneities on the scale of the phase-breaking length Lφ . This direction
of research has been carried out to investigate the flux lattice of superconducting films [147]10.

While the study of weak localization and universal conductance fluctuations provides a
reliable means of extracting estimates for the dephasing time, the extension of these methods
to the study of semiconductor wires can be somewhat more complicated. The long mean
free path characteristic of these materials means that the assumption of diffusive transport,
a central requirement in the theories of weak localization and conductance fluctuations, may
easily be violated. As we have discussed above, in quasi-ballistic quantum wires, it has been
suggested that the influence of boundary scattering may be accounted for by modifying the
weak-localization theory to account for the effects of flux cancellation [72, 74]. The main
effect of this flux cancellation is simply expected to be to enhance the magnetic field required
to quench weak localization, as compared to the diffusive case. Similarly, the flux cancellation
is expected to lead to an enhancement of the correlation field of the conductance fluctuations in
quasi-ballistic quantum wires [74]. The point to note here, however, is that these approaches
to quasi-ballistic wires are only expected to remain valid while electron motion along the
wire can be treated as diffusive. In short wires fabricated from high-mobility semiconductor
material [77, 120, 122, 150], this condition may possibly be violated, calling into question the
reliability of dephasing times extracted in these structures.

In quantum-dot systems, our understanding of dephasing mechanisms is hindered by a
lack of both well-established theories and experiments. The techniques employed by Marcus
and co-workers [135–137] provide an analytically elegant approach for extracting dephasing
times. The problem with these techniques, however, is that they are based on an assumption
of fully chaotic electron motion within the dots. An increasing number of studies suggest that
fully chaotic dynamics is the exception rather than the rule in such dots [143,151–156]. These
studies rather emphasize the existence of a mixed phase space for electron dynamics in the
dot, the statistics of which are completely different to those typical of fully chaotic system.
A central feature of the chaotic models used to extract estimates for the dephasing time is the
assumption of an exponential escape process from the dot, characterized by the single escape
rate γeff (equation (19)). For mixed systems, however, the escape process is known to be
characterized by a power-law form [151,153], the existence of which violates the assumptions
that allow estimates for the dephasing time to be extracted from equation (22). The approach
utilized by Bird and co-workers [142–145] also suffers from its own problems, however. While
it is clear that this model accounts for the basic behaviour found in experiment, we note from
equation (24) that the influence of the magnetic field on the fluctuations is basically inversely
proportional to the phase-breaking time. This means that the change in the frequency content of

10 Weak-localization effects in mesoscopic conductors are direct manifestations of the wave nature of the conduction
electrons. Shortly after the realization of the underlying physical origin of these effects, similar quantum-interference
effects were investigated theoretically and experimentally in classical waves (acoustic waves and electromagnetic
waves) [148]. In addition to the enhanced backscattering successfully realized with classical scatterers, coherent
scattering of light has very recently been observed in a laser-cooled gas of Rb atoms [149].
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the fluctuations is smallest at low temperatures, making it difficult to extract accurate values for
the phase-breaking time in this regime. At the same time, while the influence of the magnetic
field is most pronounced at higher temperatures, the actual fluctuation signal is weakest here.
Nonetheless, in spite of the various problems identified above, we find it interesting to note
that comparable values for the dephasing time have been obtained using these very different
techniques [135–137, 142–145].

3. Dephasing in disordered metals

3.1. Electron–phonon scattering time in disordered metals

The e–ph scattering time τep is a physical quantity that determines the most important
characteristics of metals and superconductors. For instance, it determines the dephasing time
for the electron wavefunction and the cooling time for an electron gas. It also determines
the relaxation time for the order parameter in a superconductor. In the case of clean metals,
the temperature behaviour of τep is well established theoretically [157], but less well tested
experimentally (see below). The e–ph scattering time in the clean limit, τ 0

ep, is given by [157]

1

τ 0
ep

≈ λep

(
k3
BT 3

h̄3ω2
D

)
≈ λep

(
kBT 3

h̄θ2
D

)
, (25)

where λep is a material-dependent constant that measures the strength of the e–ph coupling, ωD

is the Debye frequency, and θD is the Debye temperature. In the presence of strong impurity
scattering, however, the situation is less straightforward and still debated. Theoretically, the
e–ph interaction in disordered metals has been extensively studied by a number of authors for
a few decades now [48], but quite different predictions were made [22, 33, 95, 96, 158–161].
In particular, different values of the exponent of temperature p in 1/τep ∝ T p, ranging from
2 to 4, have been predicted. Experimentally, the temperature dependence of τep reported by
various measurements on different material systems are not always in agreement with one
another [7, 29]. This issue becomes even more controversial when the dependence of τep on
disorder is concerned. While theories have predicted distinct disorder dependences of τep, due
to experimental difficulties, very few measurements in the literature have been able to report
a clear dependence of τep on the electron elastic mean free path l.

Pippard was the first to theoretically address the problem of the phonon–electron
interaction in impure metals. In his landmark paper of 1955 [48], he calculated the
ultrasonic attenuation (i.e. the phonon decay time) in the presence of disorder. Since, at low
temperatures and low frequencies, this decay time is dominated by interaction with electrons,
his phonon decay time corresponds to the phonon–electron scattering time, τph−e. Therefore,
Pippard’s result can eventually lead to the theoretical calculation of the e–ph scattering
time τep. For instance, τep can be obtained through the energy-balance equation [33, 157]:
Ce/τep = Cph/τph−e, where Ce and Cph are the specific heats of electrons and phonons,
respectively. Pippard found that the longitudinal ultrasonic attenuation coefficient αL

decreased monotonically with decreasing qT l, where qT ≈ kBT /h̄vs is the wavenumber
of thermal phonons, and vs is the sound velocity. For qT l � 1, he reached the conclusion that
αL was smaller than the clean-limit (i.e. qT l � 1) result by a factor qT l. The physical origin for
this weakened phonon–electron interaction is the system’s tendency to maintain approximate
charge neutrality [48]. This result is now called the Pippard ‘ineffectiveness condition’ [162],
and the physics behind it is understood as follows. (In the following physical picture, we shall
translate the original ineffectiveness condition for the case of phonon–electron scattering to
the case of e–ph scattering, since the latter is of central interest in the present work.) A finite
mean free path l implies that the k-vector of the electron has an uncertainty of magnitude
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�k ∼ l−1. Therefore, if the electron k-vector changes upon scattering by less than �k, it is as
if the initial and final k-vectors are the same within their uncertainty. This is equivalent to the
electron not having been scattered at all. Thus, the ineffectiveness condition implies that the
low-qT components of scattering potentials are ineffective in scattering (i.e. they are excluded
as a scattering source) when qT is smaller than l−1. Pippard’s result has been confirmed by
subsequent microscopic calculations of Tsuneto [163], Schmid [160], and Eisenriegler and
co-workers [164]. (For transverse phonons, the result is more complicated, and shows that
disorder does increase the transverse ultrasonic attenuation coefficient αT in certain regimes.)

3.1.1. Measurements of τep(T , l): the importance of three dimensions. The e–ph interaction
in impure metals has been calculated by a number of authors [22, 33, 158], with a general
consensus having more or less been reached [22, 33, 161]. Experimentally, however, few
measurements have successfully provided an overall consistency check of the theoretical
predictions. One difficulty in this area of research is the problem of making and comparing
samples with significantly different characteristics [165]. Information about the e–ph scattering
rate 1/τep over a wide range of temperature and, particularly, electron elastic mean free path
l is of prime importance for a stringent test of the current theory for the e–ph interaction in
disordered metals.

In the course of studies of quantum-interference effects in disordered systems, weak
localization has been extensively investigated in two dimensions, but much less extensively
in one and three dimensions. In the case of three dimensions, quantum-interference effects
are comparatively small, compared with those in lower dimensions. As a consequence, signal
detection is sometimes difficult to carry out with a high degree of accuracy. Furthermore,
it is generally not straightforward to make disordered metals microscopically homogeneous
in the bulk and having a wide range of high resistivities. (Higher resistivities, i.e. shorter
electron mean free paths, give rise to more pronounced quantum-interference effects in bulk
materials.) It is only recently that three-dimensional measurements have been performed
sufficiently carefully, making possible systematic investigations of the dependence of the
electron dephasing time τφ (τep) on disorder.

Thus far, most three-dimensional samples used in weak-localization studies have been
thick granular films [25–27, 166], doped semiconductors [167, 168], and amorphous metal
alloys [29, 30]. In the case of thick granular films, the electronic transport behaviour is
generally complicated by the percolating nature of the sample structure, especially when
the macroscopic disorder of the sample is high. In such systems, an e–ph scattering rate
1/τep ∝ T 3 has often been observed in low-resistance samples, while a disorder-independent
inelastic scattering rate 1/τep ∝ T 2 has been observed in high-resistance samples, at liquid-
helium temperatures [26, 166]. It is conjectured that a disorder-independent 1/τep ∝ T 2 in
high-resistance granular samples might actually come from the presence of weakly disordered
metal grains. In the case of amorphous metal alloys, although the residual resistivities ρ0

are often high (hundreds of µ	 cm), it is usually difficult to adjust the value of ρ0, or l−1,
over a reasonably wide range [85, 169]. That is, the atomic arrangement in amorphous metal
alloys is already in the limit of strong randomness and, hence, a variation in the constituent
concentration will hardly change the value of ρ0. In some metallic glasses [29], the value of
ρ0 can be adjusted, e.g., by a factor ∼2, if the concentration is changed by a large amount, of
several tens of per cent. However, the electronic structure and phonon excitation spectra might
be totally altered under such circumstances. Therefore, neither such materials are of much use
for the experimental investigations of the disorder behaviour of τep. In short, a proper selection
of material systems, and the fabrication of homogeneous macroscopic samples, remain two
major challenges for this direction of experiment.
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In studies of quantum-interference effects in disordered systems, it is generally a fashion
to focus on ‘mesoscopic’ samples, whose dimensions are reduced to the smallest possible
scale. However, in order to unravel the underlying physics of τep, through measurements of its
dependences on T and l, it should be pointed out that three-dimensional systems are actually
more desirable. This is because one often encounters various experimental difficulties in the
studies of τep in disordered systems, depending largely on the sample dimensionality. The
major experimental difficulties are discussed below.

(a) In the case of two-dimensional samples, there is usually more than one relevant inelastic
processes, i.e. e–ph scattering and e–e scattering, of significance in determining the total
inelastic scattering time τi [7, 161]. Furthermore, the appropriate phonon dimensionality
in question depends in a complicated way on the film thickness, the phonon wavelength,
the acoustic transparency of the film–substrate interface, etc [7, 170–172]. Besides,
experimental data on the sound velocity in thin films (wires) is absent, and the real phonon
spectrum is typically unknown (while theory usually assumes the Debye spectrum of
phonons). These inevitable complications make it extremely difficult to quantitatively
separate τep from the total τi inferred from quantum-interference measurements. Under
such circumstances, one cannot simply rewrite equation (1) in the form of (10) with only
one temperature-dependent term. Instead, equation (1) needs to be written in the form

1

τφ(T , l)
= 1

τ 0
φ

+ AeeT
p′

+ AepT p, (26)

where AeeT
p′

is due to the e–e scattering, and AepT p is due to the e–ph scattering.
Evidently, several free parameters are then involved in any least-squares fits of
experimental data to equation (26), leading to appreciable uncertainties in the values
of the adjustable parameters. Moreover, it is established that the Nyquist e–e scattering
usually dominates over the e–ph scattering in reduced dimensions at a few kelvins and
lower, making the extraction of a comparatively small contribution τep from the measured
τφ not very reliable.

For a typical speed of sound in metals (vs ≈ 3000 m s−1), the most probable
wavelength of thermal phonons is 2πq−1

T ≈ 2πh̄vs/kBT ≈ 1400 T −1 Å (T in kelvins).
Therefore, thermal phonons in films with a thickness of several thousands of ångströms
will reveal three-dimensional behaviour at liquid-helium temperatures. On the other hand,
thermal phonons in films with a thickness of a few hundreds of ångströms or thinner could
reveal either two-, three-, or mixed-dimensional behaviour, depending strongly on the
acoustic coupling between the film and substrate.

(b) In the case of three-dimensional samples, it is established that e–ph scattering is the sole,
significant inelastic process while e–e scattering is comparatively weak and can be safely
ignored [7, 22, 24], i.e. AeeT

p′ � AepT p. (Generally, AeeT
p′

becomes compatible with
AepT p only at sub-mK temperatures.) In practice, however, it is very difficult to fabricate
disordered metals microscopically homogeneous in bulk and having a wide range of high
impurity resistivities ρ0, as discussed above. It is only recently that the temperature and
disorder dependence of τep has been clearly determined in tailor-made polycrystalline
alloys [31, 32, 82, 94, 173, 174] (see below).

(c) The issue of whether there exists a phonon confinement effect in lower-dimensional
structures is still unclear. Undoubtedly, concerning the temperature dependence, it is
necessary for one to understand the ‘bulk’ behaviour of 1/τep ∝ T p before one can
unambiguously address the question of whether reducing the sample dimensionality from
d to d − 1 might result in a change in the power-law index p.



R532 J J Lin and J P Bird

For the reasons just discussed, quantitative information on τep is very limited in the
literature. Recently, Lin and co-workers [31,175] have successfully fabricated series of three-
dimensional polycrystalline titanium alloys, such as Ti100−x(Al, Sn, Ge)x , Ti97−xSn3Scx , and
Ti73−xAl27Snx , with the (nominal) impurity concentration x of the order of a few per cent.
These polycrystalline disordered alloys are ideal for studies of weak-localization and e–e
interaction effects. Compared with other three-dimensional conductors usually employed in
this direction of research, bulk dilute titanium alloys are unique and advantageous in several
regards. These samples reveal a number of quantitative features of τep that were not previously
understood, as we now discuss:

(a) Dilute titanium alloys are essentially microscopically homogeneous metal samples having
a wide range of, and high, impurity resistivity ρ0. A wide range of ρ0 makes feasible a
reliable experimental determination of the dependence of τep on l. In Ti100−x(Al, Sn,
Ge)x alloys, the measured resistivity ρ0 increases essentially linearly with increasing x

for a wide range of ρ0, from about 2 to 150 µ	 cm [32, 173]. Such a large variation of
ρ0, by nearly two orders of magnitude, is not always achievable in other materials. The
linearity in the variation of ρ0 with x implies a uniform distribution of the impurity atoms
in the Ti host, and ensures that these alloys possess homogeneous composition, and lattice
structure, at length scales considerably smaller than Lφ .

(b) Dilute doping of a Ti host with various impurity atoms (e.g., Al, Sn, Ge, or Sc) is possible.
It is expected that different impurity atoms could affect the phonon excitation spectrum
and, probably, the electronic density of states at the Fermi level in different ways, and
therefore might cause different temperature and disorder dependences of τep. Indeed, it
has very recently been proposed that τep(T , l) should critically depend on the extent to
which the impurity atoms move (in phase or out of phase) with the lattice atoms [95,96].
The availability of many different kinds of dilute titanium alloy thus makes these systems
ideal for testing current theoretical concepts for the e–ph interaction in disordered metals.

(c) A third advantage is that the most common magnetic atoms, such as Fe, Co, and Ni, do not
form localized moments in a Ti host [98]. Thus, there is no magnetic spin–spin scattering
in these titanium alloys, i.e. the magnetic spin–spin scattering rate 1/τs = 0.

(d) Many dilute titanium alloys exhibit superconductivity, which onsets at temperatures
between about 0.5 and 2 K. In practice, such values of Tc are more than adequate for
measurements of τep. This is because, on one hand, these Tc-values are not too ‘high’, in
the sense that there is still a sufficiently wide temperature window left above Tc where the
weak-localization magnetoresistance is measurable. On the other hand, these Tc-values
are not too ‘low’, so the upper critical field, Bc2, for each alloy can be conveniently
measured using standard cryostats. With Bc2 being measured [176], the value of the
electron diffusion constant D for each alloy can be evaluated through the relation [177]:
D = (4kB/πe)/|dBc2/dT |. As is well known, the value of D is indispensable for
computing the value of τep from weak-localization studies11.

The above discussion illustrates that τep(T , l) can be reliably inferred from weak-
localization measurements using tailor-made titanium alloys. The measured inelastic scattering
time is not coupled with either the Nyquist e–e scattering time τee or the magnetic spin–spin
scattering time τs . Such a practice of decoupling different electron scattering times is often

11 Alternatively, the value of D is often evaluated by measuring the electronic specific heat at liquid-helium
temperatures to infer the electronic density of states at the Fermi level, ν(0). The value of D can then be calculated
through the Einstein relation: ρ−1

0 = De2ν(0), using the measured values of ρ0 and ν(0). The values of D deduced
from Bc2-measurements and specific heat measurements are consistent to within 20% in dilute titanium alloys. Since
it is known that ν(0) barely changes with mean free path l in many disordered metals [178], then D ∝ ρ−1

0 for a given
material system.
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lacking in other two- or three-dimensional experiments reported in the literature. It should be
repeated that such a clear-cut separation of τep was achieved by simultaneously taking into
consideration both the sample dimensionality (which minimizes e–e scattering relative to e–ph
scattering in three dimensions) and the unique sample properties.

In their experiments, Lin and co-workers have focused on the e–ph interaction in the dirty
limit of qT l � 1. This is the regime that has attracted most theoretical [22, 33, 161] and
experimental [171, 179] attention, but the problem is still not very well understood. Apart
from this regime, the nature of the e–ph interaction in the presence of intermediate disorder,
which lies between the clean limit (qT l � 1) and dirty limit, is also of interest. This is a regime
where the electron elastic mean free path is of the order of the thermal phonon wavelength, i.e.
qT l ∼ 1. In fact, it is speculated that many of the samples previously reported in the literature
were not yet strongly disordered enough for the e–ph interactions to strictly satisfy the criterion
qT l � 1, and therefore the predicted T 4 temperature dependence of 1/τep was not observed.
Instead, most previous measurements dealt with samples having qT l ∼ 1. Ptitsina et al [180]
have recently argued that the theory is in good agreement with experiment in this intermediate
region. In any case, it is important to perform systematic studies of τep in both the intermediate
and dirty limits. Systematic measurements using well-characterized samples with significantly
different properties would be very valuable in providing a stringent justification for the current
concepts of the e–ph interaction in impure conductors.

3.1.2. Experimental τep(T , l) in the dirty limit. To experimentally test the theory of e–ph
interaction in disordered conductors, the most reliable approach is to measure not only the
dependence on temperature, but also the dependence on electron elastic mean free path of τep.
This could be achieved by employing different kinds of three-dimensional sample containing
different degrees of disorder. Useful sample materials include, for example, (binary) alloys
whose compositions can be varied from sample to sample, metals and alloys whose atomic
arrangement and microstructures can be changed by tuning fabrication conditions, and alloys
that possess an intrinsic short electron mean free path of the order of the interatomic spacing.
Systematic measurements on such samples can lead to very quantitative information about
τep(T , l). Experimental approaches in this direction have been undertaken by, among others,
Lin and co-workers and are described below.

(a) Compositional disorder: dilute titanium alloys. Using a standard arc-melting method, Lin
and co-workers [31,32,173] have recently succeeded in making a series of Ti100−xAlx and
Ti100−xSnx alloys that are essentially microscopically homogeneous and have a wide range
of high impurity resistivity ρ0 ≈ 40–160 µ	 cm, corresponding to kF l ≈ 5–20. Such a
wide range of ρ0 makes feasible a reliable experimental determination of the dependence
of τep on l, in addition to the dependence on T . Figure 17(a) shows the variations of 1/τep

with temperature for four Ti100−xAlx alloys with different concentrations of aluminium
x. This figure clearly indicates that 1/τep obeys a T 2 law. Moreover, close inspection
of figure 17(a) indicates that the magnitude of the scattering rate at a given temperature
increases with increasing x. Since ρ0 ∝ x in dilute Ti100−xAlx alloys [181], 1/τep increases
with ρ0. A similar T 2 dependence of 1/τep has also been observed in dilute Ti100−xSnx

alloys with ρ0 � 100 µ	 cm [32].
Figure 17(b) shows the variation of the measured e–ph scattering rate 1/τep at

a representative temperature of 10 K with the impurity resistivity ρ0 for Ti100−xAlx
and Ti100−xSnx alloys. This plot clearly indicates a strong disorder dependence of
1/τep(10 K) ∝ ρ0 ∝ l−1, i.e. 1/τep varies inversely linearly with the electron elastic
mean free path l. For these Ti100−x(Al, Sn)x alloys, qT l ≈ (0.0068–0.029) T , where T
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Figure 17. (a) Variation of the e–ph scattering rate 1/τep with temperature for Ti100−xAlx alloys
with x ≈ 5.3 (open triangles), 7.2 (solid circles), 8.0 (squares), 10.2 (solid triangles), and 15.0
(open circles). The straight line is drawn proportional to T 2 and is a guide to the eye. (b) Variation
of the e–ph scattering rate at 10 K, 1/τep(10 K), with impurity resistivity ρ0 for dilute Ti100−xAlx
(open circles) and Ti100−xSnx (solid circles) alloys. The straight solid lines drawn through the data
are guides to the eye. This figure was reproduced with permission from [174].

is in kelvins. This value of qT l suggests that the e–ph interaction is well within the dirty
limit at the measurement temperatures.

(b) Structural disorder: Au–Pd alloys. Zhong and Lin [94] have recently measured τep in a
series of three-dimensional Au50Pd50 films with a wide range of high residual resistivity
ρ0 ≈ 70–230 µ	 cm, corresponding to kF l ≈ 2.5–8. Their films were prepared by
a standard dc sputtering deposition method; the deposition rate was varied to tune the
amount of disorder ρ0. Unlike in the case of the dilute titanium alloys just discussed,
where the level of disorder was controlled by the amount of the doped impurity atoms (Al
or Sn), the composition in this case is fixed (i.e. Au50Pd50) while the level of disorder is
controlled by the structural arrangement of Au and Pd atoms. Therefore, this series of
samples has a quality of disorder very different from that in dilute titanium alloys. It is
conjectured that the nature of the e–ph interaction, as well as the behaviour of τep(T , l),
could be very sensitive to defect and impurity influence [95,96]. Then, measurements on
these two material systems, dilute titanium and Au–Pd alloys, should provide independent
and complementary results on τep(T , l).

The measured dephasing time τφ in one of these Au–Pd films is plotted in figure 5(a).
Figure 5(a) indicates that the total τφ can only be described by equation (10) with an
inelastic scattering rate having an exponent of temperature p = 2. On the other hand, the
measured τφ can by no means be described using either p = 3 or 4. Figure 5(b) shows
the e–ph scattering rate 1/τep at a representative temperature of 10 K as a function of
electron mean free path for several Au–Pd thick films. This figure indicates that 1/τep

varies linearly with l. Very recently, a similar variation of 1/τep ∝ T 2l has also been
found in three-dimensional Ag40Pd60 films [182] and V100−xAlx alloys [183]. For these
Au–Pd alloys, qT l ≈ (0.024–0.078) T , where T is in kelvins. This value of qT l suggests
that the e–ph interaction is well within the dirty limit at measurement temperatures.

(c) Dirty limit: Ti73Al27 alloys. Apart from measurements in dilute titanium and Au–Pd
alloys, there exist a number of experiments which also reported an e–ph scattering rate
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Figure 18. Variation of the electron dephasing rate 1/τφ with temperature for several
Ti73−xAl27Snx alloys, with 0 � x � 5. Since the measured values of 1/τφ are very similar for all
alloys (i.e. x), it is unnecessary to label each symbol with its associated particular alloy. The solid
curve is a least-squares fit to equation (10) with the exponent of temperature p ≈ 1.9±0.2. This fig-
ure was reproduced with permission from [82]. Copyright 1999 by the American Physical Society.

1/τep ∝ T 2 in various metal films [184]. Theoretically, however, a T 4 law in the dirty
limit is predicted, but this is essentially not found in experiments [171,179]. Since the T 4

temperature dependence is calculated under the disorder criterion of qT l � 1, information
about the temperature dependence of 1/τep in samples having even smaller values of qT l

than ever studied is therefore of crucial importance for a critical test of the theory.

With this motivation, Hsu et al [82] recently fabricated a series of polycrystalline tin-
doped Ti73Al27 alloys using a standard arc-melting method. One of the advantages of these
alloys is that their impurity resistivities are high (≈225 µ	 cm) and are barely changed upon
Sn doping. Such an extremely high value of ρ0, corresponding to an electron mean free path l

of the order of the interatomic spacing, put the e–ph interaction in this material much closer to
the dirty limit than ever attained in any previous measurements. (Since the electron mean free
path in the parent Ti73Al27 phase is already of the order of the interatomic spacing, tin doping
will thus hardly change ρ0.) In this case, Hsu et al found that their measured 1/τφ can be
least-squares fitted with equation (10), resulting in an exponent of temperature p ≈ 1.9 ± 0.2
(figure 18). That is, even in this alloy system with a very low value of qT l, the measured 1/τep

still demonstrates a T 2 law. There is absolutely no evidence of a T 4 temperature dependence
as expected from the theory. For these Ti73−xAl27Snx alloys, qT l ≈ 0.006 T , where T is in
kelvins, so the e–ph interaction is well within the dirty limit at the measurement temperatures.
This experimental result provides very strong evidence that indicates a quadratic temperature
dependence of 1/τep in disordered conductors.

3.1.3. Comparison with theory.

The dirty limit. Closely related to Pippard’s work on ultrasonic attenuation discussed
above [48], the problem of the e–ph interaction in impure conductors has been evaluated by
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Schmid [160, 185] and Rammer and Schmid [22]. Rammer and Schmid considered impurity
atoms that move in phase with the other lattice atoms in the long-wavelength limit, namely,
their key assumption is that the scattering potential is completely dragged by the phonons.
(Therefore, the system maintains approximate charge neutrality.) Rammer and Schmid found
that there is a subtle compensation between the coupling of the electrons to the ‘vibrating’
impurities and the interaction of the electrons with the deformed lattice vibrations. As a
consequence, the e–ph scattering rate is entirely changed from that in the clean case. For a
three-dimensional system in the dirty limit, they predict

1

τep

≈ λep

(
kBT 3

h̄θ2
D

)
G(T , l), (27)

which differs from equation (25) by the factor G(T , l). For a simple jellium model with a
spherical Fermi surface, G ∝ T at low temperatures, and decreases as T is increased at high
temperatures. In addition, G is a function of the degree of disorder through kF l. Such a
non-monotonic temperature dependence of G implies that τep cannot be described by a simple
power law over the entire temperature range, although over the limited range accessible in a
typical experiment one would expect to observe an approximate power law with an effective
exponent.

Of particular importance in equation (27) is its prediction for the dirty limit of the e–ph
interaction. Rammer and Schmid [22] found that the e–ph interaction is weakened and given
by

1

τep

∼ (qT l)

(
1

τ 0
ep

)
∝ T 4l. (28)

This result is consistent with Pippard’s conclusion for the longitudinal ultrasonic attenuation
coefficient αL discussed above. This prediction, equation (28), has received wide acceptance
from the theoretical community. Moreover, it has been independently confirmed in subsequent
calculations by Reizer and Sergeev [33], Belitz [161], and Sergeev and Mitin [95, 96].

Experimentally, the e–ph scattering time in impure metals has previously been measured
in many systems. However, the theoretical prediction of equation (28) is essentially not found.
On the contrary, observation of an e–ph scattering rate 1/τep ∝ T 2 has been reported in both
two-dimensional films [184] and three-dimensional samples [82, 94, 173, 183]. Such a result
has caused much confusion and controversy on the nature of the e–ph interaction in impure
conductors for years. Since the dirty-limit condition of qT l � 1 is well satisfied in the recent
measurements on dilute titanium and Au–Pd alloys discussed above, the experimental T 2 law
thus causes renewed interest in the nature of the e–ph interaction in disordered metals.

Concerning the dependence of τep on disorder, a linear dependence of τep on l has been
found in Ti100−x(Al, Sn)x alloys [32, 173], but not (yet) in any other materials. On the other
hand, an inverse linear dependence of τep on l has been found in three-dimensional Au–Pd
films [94], Ag–Pd films [182], V100−xAlx alloys [183], and two-dimensional Nb films [186]
and Sb films [187]. The former disorder behaviour of τep ∝ l is actually consistent with
an earlier theory due to Bergmann [158] and Takayama [159] which considered only the
scattering of electrons by impurity vibrations12. The latter disorder behaviour of τep ∝ l−1 is
in line with the prediction of the Pippard–Rammer–Schmid theory, equation (28). It is quite
surprising that opposite, i.e. linear and inversely linear, dependences of τep on l are realized
in different disordered metals. These seemingly contradictory results have recently prompted

12 Recently, however, it was pointed out by Reizer and Sergeev [33] that the calculation of Takayama did not properly
subtract the elastic contribution from the total (impurity and phonon) scattering rate, and hence overestimated 1/τep .
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the introduction of new theoretical concepts of the nature of the e–ph interaction in impure
conductors [95, 96, 188].

Theoretical expressions for τep(T , l). Equation (28) is derived under the assumption that,
in a disordered conductor, the scattering potential of defects and impurities is completely
dragged by phonons. Under such a condition, it was found that the e–ph coupling depends
substantially on the parameter qT l. If qT l < 1, the e–ph coupling is a factor qT l weaker
than the coupling in the clean limit. (As discussed, this statement is known as the Pippard
ineffectiveness condition, i.e. electrons strongly scattering from impurities and defects are
ineffective in scattering phonons [48, 162].) In an attempt to resolve the large discrepancies
between the theory and experiment on τep reported in the literature, Sergeev and Mitin [95,96]
have very recently generalized the Pippard–Rammer–Schmid model to take into consideration
an additional ‘static’ (i.e. ‘non-vibrating’) potential. Largely on the basis of the Rammer–
Schmid theory, they introduced an electron mean free path with respect to the static potential,
L, in addition to the total electron mean free path l. They found that even a relatively weak
static potential drastically changes the effective e–ph coupling and, thus, the e–ph scattering
rate 1/τep.

According to Sergeev and Mitin [95,96], the inelastic electron scattering rate of an electron
at the Fermi surface due to the interaction with longitudinal phonons is given by13

1

τep,l

= 7πζ(3)

2

βl(kBT )3

h̄3(kF vl)2
Fl(qT,l l), (29)

where

Fl(z) = 2

7ζ(3)

∫ kBθDl/h̄vlz

0
dx �l(xz)(N(x) + f (x))x2,

and

�l(x) = 2

π

[
x arctan(x)

x − arctan(x)
−

(
1 − l

L

)
3

x

]
.

N(x) and f (x) are the Bose and Fermi distribution functions, �l(x) is the Pippard function,
and ζ(n) is the Riemann zeta function. The dimensionless coupling constant responsible for
the interaction of electrons with longitudinal phonons is defined by βl = (2EF /3)2(ν/2ρiv

2
l ),

where ν is the electronic density of states, and ρi = niM is the mass density. In the limiting
cases and at T � θD , equation (29) reduces to

1

τep,l

= 7πζ(3)

2

βl(kBT )3

h̄3(kF vl)2




1, qT ,l l � 1
2π3(qT,l l)

35ζ(3)
+

3π

7ζ(3)(qT,lL)
qT,l l � 1.

(30)

More importantly, the inelastic electron scattering from the vibrating potential generates
a new channel of e–ph interaction. Sergeev and Mitin [95, 96] found that this channel is also
significantly enhanced in the presence of a static potential. The inelastic electron scattering
rate of an electron at the Fermi surface due to the interaction with transverse phonons is now
given by

1

τep,t

= 3π2βt (kBT )2

h̄2(kF vt )(kF l)

(
1 − l

L

)
Ft(qT,t l), (31)

where

Ft(z) = 4

π2

∫ kBθDl/h̄vt z

0
dx �t(xz)(N(x) + f (x))x,

13 In this work we will not attempt to distinguish explicitly between the e–ph inelastic scattering rate and the e–ph
energy relaxation rate. These two rates differ only by a numerical factor of order unity [170, 189].
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and

�t(x) = 1 +

(
1 − l

L

)(
3x − 3(x2 + 1) arctan(x)

2x3

)
.

The dimensionless kinetic constant responsible for the interaction of electrons with transverse
phonons is defined by βt = (2EF /3)2(ν/2ρiv

2
t ) = βl(vl/vt )

2. In the limiting cases and at
T � θD , equation (31) reduces to

1

τep,t

= 3π2βt (kBT )2

h̄2(kF vt )(kF l)

(
1 − l

L

) 


1, qT ,t l � 1
l

L
+

(
1 − l

L

)
π2(qT,t l)

2

10
qT,t l � 1.

(32)

Equations (30) and (32) indicate a non-single value of the exponent of temperature, and a
non-monotonic disorder dependence, of both longitudinal (τep,l) and transverse (τep,t ) e–ph
scattering times. The total e–ph scattering rate in the limiting cases is given by the sum of
these two contributions.

(a) In clean metals (qT,l l, qT ,t l → ∞), the total e–ph scattering rate is given by

1

τep

= 7πζ(3)

2

βl(kBT )3

h̄3(kF vl)2

[
1 +

6π

7ζ(3)(qT,l l)

(
1 − l

L

)(
vl

vt

)3]
. (33)

The first term is due to the electron–longitudinal-phonon interaction while the second term
is due to the electron–transverse-phonon interaction. In the limit qT,l l → ∞, the first term
dominates the total e–ph scattering rate 1/τep. This reproduces the classical result of [157],
equation (25). For a typical impure metal with kF ∼ 1.5 × 1010 m−1, vl ∼ 4 × 103 m s−1,
and βl ∼ 0.1, equation (33) predicts a scattering rate of 1/τep ∼ 0.8 × 106 T 3 s−1 (T
in K).

(b) In disordered metals and in the dirty limit (qT,l l, qT ,t l � 1), the total e–ph scattering rate
is given by

1

τep

= π4(kBT )4lβl

5h̄4k2
F v3

l

[
1 +

3

2

(
1 − l

L

)(
vl

vt

)5]

+
3π2(kBT )2βl

2h̄2k2
F Lvl

[
1 + 2

(
1 − l

L

)(
vl

vt

)3]
. (34)

The asymptotics of equation (34) are as follows.

(i) In the case of pure ‘vibrating’ scatterers (L → ∞), equation (34) reproduces the complete-
drag result of Rammer and Schmid [22], and Reizer and Sergeev [33], i.e. equation (28):

1

τep

= π4(kBT )4lβl

5h̄4k2
F v3

l

[
1 +

3

2

(
vl

vt

)5]
. (35)

The first term is due to the electron–longitudinal-phonon interaction while the second term
is due to the electron–transverse-phonon interaction. Since vl/vt ∼ 2 in typical metals, it
is clearly seen that the second term is 1–2 orders of magnitude larger than the first term,
i.e. the electron–transverse-phonon interaction dominates the total scattering rate 1/τep in
the dirty limit. For a typical impure metal with kF ∼ 1.5×1010 m−1, vl ∼ 4×103 m s−1,
and βl ∼ 0.1, equation (35) predicts a scattering rate of 1/τep ∼ 2 × 1015 T 4l s−1 (in
MKS units).
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Figure 19. Calculated variation of the e–ph scattering rate 1/τep with (a) temperature and
(b) electron mean free path from equation (34), using parameters suitable for disordered Au films:
l = 30 Å, vl = 3200 m s−1, vt = 1200 m s−1, vF = 1.4 × 106 m s−1, βl = 0.2, and βt = 1.4.
The parameter k (=1 − l/L) = 1 stands for the case of complete drag of the scattering potential,
while k < 1 stands for the case of incomplete drag. This figure was reproduced with permission
from [95]. Copyright 2000 by the American Physical Society.

(ii) In the case of incomplete drag (L � ∞; in reality, 1 − l/L will not be much smaller
than 1), equation (34) approximates as

1

τep

= 3π2(kBT )2βl

h̄2k2
F Lvl

(
1 − l

L

)(
vl

vt

)3

. (36)

This term is due to interactions between electrons and transverse phonons. In particular,
this equation predicts an e–ph scattering rate 1/τep ∝ T 2L−1. That is, the static potential
completely changes the temperature and disorder dependences of 1/τep fromT 4l toT 2L−1.
For a typical impure metal with kF ∼ 1.5 × 1010 m−1, vl ∼ 4 × 103 m s−1, βl ∼ 0.1,
vl/vt ∼ 2, and (1 − l/L) ∼ 0.9, equation (36) predicts a much enhanced scattering rate
of 1/τep ∼ 0.4 T 2L−1 s−1 (in MKS units).

(c) In disordered metals and in the presence of static scattering potential, it can be shown
that transverse phonons dominate the relaxation over a wide range of temperature. In
particular, equation (32) indicates that the scattering rate obeys a T 2l−1 law in both
asymptotics: qT,t l � 1 and qT,t l � 1. At the intermediate temperatures, qT,t l ∼ 1,
the exponent in the temperature dependence is larger than 2.

Figure 19(a) shows the theoretical prediction of the temperature dependence of the e–ph
scattering rate 1/τep, equations (29) and (31), for typical Au films with l = 30 Å and different
values of k = 1 − l/L. This figure clearly illustrates that the electron–transverse-phonon
scattering (TA) dominates over electron–longitudinal-phonon scattering (LA). In the case of
complete drag of the scattering potential (k = 1), the scattering rate 1/τep ∝ T 4 at low
temperatures. In the case of the incomplete drag (k < 1), the temperature dependence of 1/τep

changes to T 2 and the scattering rate greatly increases from that in the complete-drag case.
Figure 19(b) shows the theoretical prediction of the electron mean free path dependence of
1/τep for the same Au films as were considered in figure 19(a). This figure clearly illustrates
that, in the case of complete drag of the scattering potential, the scattering rate 1/τep ∝ l in
the dirty limit (i.e. short mean free paths and low temperatures). On the other hand, in the
case of incomplete drag of the scattering potential, and in the dirty limit, the mean free path
dependence of 1/τep changes to l−1 and the scattering rate greatly increases from that in the
complete-drag case.
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Table 1. The measured temperature dependence of 1/τep(T ) in representative disordered metals.
The sample dimensionality is with respect to the phase-breaking length Lφ . The experimental
temperature, T ∗

mea, denotes the representative temperature regime where the e–ph scattering was
found to be predominant in the measurement. The value of qT l ≈ kBT l/h̄vs in each sample is
calculated using the average (bulk) speed of sound for that particular metal.

Sample l (Å) T ∗
mea (K) qT l τ−1

ep (T ) References

Au (1D), Au (2D) 100 (5)a–25 3.8–19 T 3 [190]
Cu (2D)b 2200 0.025–0.32 0.20–2.6 T 3 [191]
Nb (2D) 12 (5)a–20 0.36–1.4e T 3 [192]
Al (2D) 61 1.5–6 0.24–1 T 3 [193]
Cu1−xOx (3D) 11 1.5–20 0.06–0.8 T 3 [166]
Au (2D)b 25.4 0.2–1 0.04–0.19 T 3 [194]

CuCr (3D)b 368 0.5–10 0.68–14 T 2 [195]
CuCr (2D)b 103 0.5–10 0.19–3.8 T 2 [195]
CuCr (1D)b 76 0.5–10 0.14–2.8 T 2 [195]
Au (2D) 39 (5)a–20 1.5–5.9 T 2 [196]
W (2D) 38 (5)a–30 0.48–2.9 T 2 [197]
Au (2D)b 4 0.3–20 0.01–0.6 T 2 [198]
Ti73Al27 (3D) 2 (3)c–22 0.02–0.15 T 2 [82]
Li (1D)d 400 1.6–5.5 1.4–4.8 T 2 [199]
Li (1D)d 200 0.1–8 0.044–3.5 T 2 [200]

Hf (2D)b 9.4 0.04–0.7 0.0025–0.044e T 4 [179]
Ti (2D)b 23 0.1–0.5 0.01–0.05e T 4 [179]
Bi (2D) 25 0.6–1.2 0.11–0.22 T 4 [171]

a Below this temperature, the Nyquist electron–electron scattering and/or a ‘saturation’ of τφ was
predominant, while above around this temperature, e–ph scattering determined the total dephasing.
b τep was extracted from electron heating measurements. In [198], τep was determined using
both heating and magnetoresistance measurements; the values determined from these two methods
agreed very well with each other.
c Much below this temperature, the scattering due to superconducting fluctuations became
noticeable, while above around this temperature, e–ph scattering dominated the total dephasing.
d Strictly speaking, the inelastic mechanism that leads to the T 2 temperature dependence of the
electron scattering rate in Li wires is still not understood. It might be due to e–ph scattering or
another yet to be identified inelastic process.
e This value of qT l was calculated using the transverse speed of sound.

The central result of this new Sergeev–Mitin theory is that it can explain (to a certain
extent) several experimental features of 1/τep that were not understood previously in terms
of the standard Pippard–Rammer–Schmid theory [22, 48]. For example, this new theory
explains satisfactorily the variation of 1/τep ∼ T 2l−1 found in Ti100−xAlx and Ti100−xSnx

alloys [32, 173]. This theory also provides a qualitative basis for understanding the different
disorder behaviours of 1/τep found in different alloys. Recently, Lin and co-workers have
found that the behaviour of 1/τep(T , l) widely varied when different impurity atoms (Al, Sn,
Sc, Ge, etc) were gradually introduced into a titanium host [32]. According to this new theory,
the total amount of disorder (i.e. ρ0 in three dimensions and R� in two dimensions) is not
the only significant factor in establishing the temperature and disorder dependences of 1/τep.
The microscopic properties (e.g. the nature of the imperfections) should also play a critical
role. In addition, this theory raises the issue that the clean-limit condition of qT l � 1 was not
satisfied in many existing measurements that reported a seemingly 1/τep ∝ T 3 dependence,
and hence they should not be explained in terms of electron–longitudinal-phonon scattering.
Indeed, tables 1 and 2 indicate that most previous experiments actually dealt with samples
falling in the intermediate-disorder regime of qT l ∼ 1.
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Table 2. Measured temperature and disorder dependences of 1/τep(T , l) in representative
disordered metals. The sample dimensionality is with respect to the phase-breaking length Lφ .
The experimental temperature, T ∗

mea, denotes the representative temperature regime where the e–ph
scattering was found to be predominant in the measurement. The value of qT l ≈ kBT l/h̄vs in each
sample is calculated using the average (bulk) speed of sound for that particular metal.

Sample l (Å) T ∗
mea (K) qT l τ−1

ep (T , l) References

Mg (2D) 6–19 4–20 0.070–1.1 T 2l0 [184]
Ag (2D) 12–28 4–20 0.24–2.9 T 2l0 [184]
Au (2D) 10–65 4–20 0.30–10 T 2l0 [184]
Ti100−xAlx (3D) 2.9–7.2 (3)a–15 0.023–0.28 T 2l−1 [173]
Ti100−xSnx (3D) 2.8–4.2 (3)a–15 0.021–0.16 T 2l−1 [32]
Au50Pd50 (3D) 3.7–12 (5)b–20 0.12–1.6 T 2l [94]
V100−xAlx (3D) 1.7–2.5 (4)a–20 0.022–0.16 T 2l [183]
Nb (2D)c 8–15 1.5–15 0.05–0.85 T 2l [186]
Sb (2D) 10–54 (10)d–20 0.7–7 T 2l [187]

Ti100−xSnx (3D) 5.9–9.7 (3)a–15 0.047–0.38 T 3l−1 [32]
Ti100−xGex (3D) 3.2–8.0 (3)a–15 0.025–0.31 T 3,4l0 [32]
Sb (2D)c 50–500 1.3–4.2 0.43–14 T 1.4l0 [172]
Sb (3D) 14–40 (3)b–14 0.28–3.7 T 2.4l0 [201]

a Much below this temperature, the scattering due to superconducting fluctuations became
noticeable, while above around this temperature, e–ph scattering dominated the total dephasing.
b Much below this temperature, a ‘saturation’ of τφ was appreciable, while above around this
temperature, e–ph scattering dominated the total dephasing.
c τep was deduced from electron heating measurements.
d Below this temperature, the Nyquist electron–electron scattering and/or a ‘saturation’ of τφ was
predominant, while above around this temperature, e–ph scattering determined the total dephasing.

The importance of the Umklapp process. Largely inspired by the experimental observations of
1/τep ∝ T 2l−1 in dilute Ti100−xAlx and Ti100−xSnx alloys [32, 173], Jan et al [188] have very
recently studied the e–ph interaction in impure metals, focusing particularly on polycrystalline,
substitutional alloys. Analysing the Ti100−xAlx data, they noticed that the alloys showed the
property l−1 ∝ x, which implies that 1/τep ∝ x. Jan et al therefore suggested that it is
the Al-related substitutional disorder that enhances the e–ph interaction. They considered the
additional contribution due to the Umklapp process of impurity scattering, which was neglected
in all previous nearly free-electron calculations but which is important for the present problem.
That is, Jan et al included in their full treatment of impurity scattering the Fourier components of
the impurity potential at wavevectors of magnitude ∼O(2π/a), where a is the lattice constant.
They found that, as a result of including the Umklapp process, the scattering rate in the dirty
limit qT l � 1 is enhanced by disorder due to substitutional impurities and random lattice shift
of crystallites. To within a factor of order unity, their result for the e–ph scattering rate in
impure polycrystalline metals is given by [188]

1

τep

∼ 3π2
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vt

)3
]
. (37)

Notably, this equation predicts a temperature and disorder dependence of 1/τep ∼ T 2l−1

in the dirty limit of qT l � 1. For a typical impure metal with kF ∼ 1.5 × 1010 m−1,
vl ∼ 4 × 103 m s−1, vl/vt ∼ 2, and βl ∼ 0.1, equation (37) predicts a scattering rate of
1/τep ∼ 0.25 T 2l−1 (in MKS units). This theoretical value is in reasonably good agreement
with experimental results of figures 17(a) and (b). It should be noted that the underlying physics
of the e–ph interaction invoked by Jan et al [188] is entirely different from that investigated
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by Sergeev and Mitin [95,96]. Further investigations are needed to clarify the advantages and
disadvantages of each theory.

3.1.4. Further discussion of experimental τep(T , l). The temperature and mean free path
variations of τep(T , l) depend strongly on the disorder and dimensionality of the sample under
study. Whether the e–ph interaction falls in the clean or dirty limit is determined by the
parameter qT l ≈ kBT l/h̄vs . For typical metals, the average sound velocity lies between about
2000 and 4000 m s−1. Then, qT l ≈ (3.3–6.5) × 107 T l (in MKS units), and samples that
have an electron mean free path of the order of several tens (hundreds) of ångströms will fall
in the intermediate (clean) regime at a few kelvins. To fall safely in the dirty limit at a few
kelvins, samples with a mean free path of the order of the interatomic spacing are required.
On the other hand, samples with an electron mean free path of several hundreds of ångströms
or longer will hardly be in the dirty limit, even at sub-kelvin temperatures.

We have collected the relevant sample parameters (electron mean free path, measurement
temperature, qT l) for a number of experiments that have reported temperature and/or mean free
path dependences of τep in disordered metals and alloys. Table 1 lists those experiments where
only the temperature dependence of τep was reported, while table 2 lists those experiments
where both the temperature and disorder dependence were studied. The important features
revealed in these two tables are characterized as follows.

(a) The T 4 law. We have discussed that the theoretically expected T 4 temperature
dependence of 1/τep in the dirty limit has been scarcely seen in experiments. Very recently,
using thermal conductance measurements, Gershenson et al [179] have found a 1/τep ∝ T 4

dependence in ultrathin disordered superconducting Hf and Ti films between 0.04 and �0.7 K.
Their films were deposited by dc magnetron sputtering on sapphire substrates. The dirty-limit
condition of qT l � 1 was well satisfied in their films (see table 1). In addition, the acoustic
impedances of Hf and Ti were close to the impedance of the sapphire substrate, so vibrations
of the film–substrate interface were expected to be identical to the phonon modes in the film.
They found both the magnitude and temperature dependence of the measured τep to be in close
agreement with the prediction of equation (35). Their result is plotted in figure 20. Essentially
for the first time in the literature, this measurement confirms the T 4 temperature dependence
expected from theory. Surprisingly, however, close inspection of figure 20 indicates that, at
higher temperatures, between about 0.7 and 1 K, the measured power law for the temperature
dependence became slower than the T 4 law. In the Hf films, a deviation from the T 4 law was
already appreciable at 0.7 K where qT l ≈ 0.04 � 1. Such a noticeable deviation, occurring
in a regime where the condition for the dirty limit is well satisfied, is not understood and might
signify the incompleteness of the current theory. Previously, a dependence 1/τep ∝ T 4 was
found in Bi thin films over a very limited temperature range of 0.6–1.2 K [171].

(b) The T 2 law. Experimentally, a quadratic temperature dependence of 1/τep is
frequently found in weak-localization studies in one-dimensional [199, 200, 202], two-
dimensional [84,184,186,197,198,203], and three-dimensional [26,94,204–206] samples. In
addition, there exist several measurements of the tunnelling electronic density of states [207]
that suggest an Eliashberg function α2F(ω) ∝ ω, where ω is the phonon frequency. An
Eliashberg function linear in ω implies an inelastic e–ph scattering rate14 1/τep ∝ T 2. In
a series of carefully designed electron heating measurements on CuCr films of different
thickness and width, DiTusa et al [195] found a dependence 1/τep ∝ T 2 between 0.5 and
10 K, independent of the phonon dimensionality and the level of disorder in the film (see

14 The temperature dependence of 1/τep is determined by the frequency behaviour of the Eliashberg function α2F(ω)

through the relation 1/τep = (4π/h̄)
∫

dω [α2F(ω)/sinh(h̄ω/kBT )]. In general, an α2F(ω) ∝ ωs would result in a
scattering rate 1/τep ∝ T s+1, where s is a positive integer; see, for example, [208] and [170].
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Figure 20. The temperature dependence of the e–ph scattering time (labelled as τE in the figure)
for a 250 Å thick Hf film with R�(1 K) = 38 	 (triangles), and a 200 Å thick Ti film with
R�(1 K) = 14.7 	. The dashed and solid lines represent the predictions of equation (35) for Hf
and Ti, respectively. This figure was reproduced with permission from [179]. Copyright 2001 by
the American Physical Society.

table 1). They concluded that quantization of the phonon spectrum due to the influence of the
finite sample dimensions has no effect on the temperature dependence of 1/τep. Interestingly,
Trudeau and Cochrane [205] found in a series of paramagnetic amorphous Zr–Fe alloys an
inelastic scattering rate 1/τi ∝ T 2 over the very wide temperature range of 4–77 K. This
inelastic rate is probably due to e–ph scattering.

Figure 21 shows the inelastic scattering time τi and energy relaxation time τE as a function
of temperature for a 75 Å thick, highly disordered Au film measured by Dorozhkin and
Schoepe [198]. The value of τi was extracted from weak-localization magnetoresistance
measurements, while the value of τE was extracted from electron heating measurements. It is
clearly seen that, above ∼5 K, e–ph scattering dominates the dephasing and 1/τi ≈ 1/τep ∝ T 2.
On the other hand, below ∼5 K, the two-dimensional Nyquist e–e scattering dominates the
dephasing and 1/τi ≈ 1/τee ∝ T . Between 0.3 and 2 K, the measured energy relaxation
time τE is much longer than the Nyquist dephasing time, and demonstrates a T −2 temperature
dependence. Most remarkably, the measured τE clearly coincides with a low-temperature
extrapolation of the τi data from above 5 K. This proves that e–ph scattering both determines
τE and, at high temperature, limits phase coherence. This figure also illustrates that, at low
temperatures, the Nyquist e–e dephasing time is much shorter than the energy relaxation time.

Experimentally, measurements of the electron mean free path dependence of τep are
much more difficult than studies of the temperature dependence, and there have been few
successful measurements on the disorder dependence of 1/τep over a wide range of l. Peters
and Bergmann [184] found an inelastic scattering rate 1/τep that scales with (or, quite close
to) T 2 in many quench-condensed metal films, including Mg, Ag, and Au. However, they did
not observe any disorder dependence even when the sample resistivity was varied by more
than a factor of ∼6 (see table 2). Figure 22 shows a plot of the inelastic scattering field
Hi = h̄/4πDτi at 9.5 K as a function of low-temperature resistivity for two series of Au thin
films measured by Peters and Bergmann [184]. A linear dependence of Hi on ρ is clearly seen
in figure 22, implying that τi is independent of l. (In this experiment, 1/τi corresponds to 1/τep.)
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Figure 21. The inelastic scattering time τi and energy relaxation time τE as a function of
temperature for a 75 Å thick, highly disordered Au film. τi was determined from weak-localization
magnetoresistance measurements, while τE was determined from electron heating measurements.
This figure was reproduced with permission from [198].

Figure 22. The inelastic scattering field Hi = h̄/4πDτi at 9.5 K for several Au films as a function
of the resistivity of the film. The circles denote a series of films deposited in several steps to vary
thickness, while the squares denote a series of as-prepared and subsequently annealed films. The
dotted curve gives the theoretical prediction for Hi assuming two-dimensional Nyquist electron–
electron scattering. The solid curve drawn through the data is a guide to the eye. This figure was
reproduced with permission from [184].

Belitz and Sarma [50] have argued that, in thin-film experiments like that shown in figure 22,
the extraction of 1/τep could be combined with a non-negligible 1/τee (equation (26)) and it
might also be complicated by a mixed phonon dimensionality [50]. Nevertheless, Bergmann
et al [170] pointed out that the contribution from the two-dimensional Nyquist e–e scattering
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can be clearly separated in their measurements. Therefore, they asserted that the quadratic
temperature dependence of 1/τi (i.e. 1/τep) remains a theoretical challenge.

In one-dimensional Li wires at cryogenic temperatures, an inelastic scattering rate ∝T 2

was independently observed by Licini et al [200] and Moon et al [199]. Since in these two
experiments the electron mean free path was 200 and 400 Å, respectively, the e–ph interaction
in these wires fell in the intermediate-disorder regime of qT l ∼ 1. The reason for the observed
T 2 dependence of 1/τi therefore requires further clarification.

(c) The T 2l dependence. Disordered A15 compounds continue to be an interesting subject
in condensed-matter physics due to their unusual normal-state electrical transport properties.
However, despite the fair amount of investigation conducted, the e–ph scattering time in
superconducting A15 compounds (in the normal state) has not been measured. Very recently,
Meikap and Lin [183] have measured τep in a series of disordered V100−xAlx alloys whose
composition is close to the superconducting A15 V3Al compound. Their alloys have an
extremely small value of qphl ≈ (0.005–0.008) T , where T is in kelvins. They obtained a
scattering rate 1/τep ∝ T 2l. In fact, similar temperature and disorder dependences of 1/τep

have recently been reported in three-dimensional Au50Pd50 [94] and Ag40Pd60 [182] films, and
two-dimensional Sb [187] and Nb [186] films (see table 2). These observations of a quadratic
temperature, and linear mean free path, dependence cannot be explained in terms of existing
theories [22, 95, 96, 188].

In the case of semiconductor structures, an increasing e–ph scattering rate 1/τep with
increasing disorder has been observed in GaAs/AlGaAs heterostructures by Mittal et al [209]
and Chow et al [210].

(d) The T 3 law. A dependence of the e–ph scattering rate 1/τep ∝ T 3 has been obtained in
numerous systems, including one-dimensional [190], two-dimensional [190, 191, 194], and
three-dimensional [85, 166, 167, 211] samples. For decades, a measured T 3 temperature
dependence has often ‘intuitively’ been ascribed to energy relaxation due to longitudinal
phonons in the clean limit. However, for example, inspection of table 1 indicates that this
is rarely the case. On the contrary, most existing measurements that have reported a T 3

temperature dependence have had a value of qT l ∼ 1, instead of qT l � 1. According
to Sergeev and Mitin [95, 96], such a T 3 temperature dependence actually suggests the
intermediate-disorder regime for transverse phonons. It is worth noting that, even in the
very widely accepted experiment of Roukes et al on Cu films [191], where the mean free path
l ≈ 2200 Å was extremely long and a rate 1/τep ∝ T 3 was found, the condition for the clean
limit was barely satisfied (see table 1). This was due to the fact that these authors focused their
measurements at sub-kelvin temperatures.

(e) The intermediate-disorder regime. We have discussed extensively that the
experimentally determined values of 1/τep are often in disagreement with theoretical
predictions in the dirty limit. Since the dependence of 1/τep on temperature and disorder
is non-monotonic over a wide range of T and l, it is also important to test the theoretical
prediction for the intermediate-disorder regime. Lin et al [201] have recently measured the
e–ph scattering rate 1/τep in a series of three-dimensional Sb films. The semi-metal Sb was
chosen because its mean free path l is relatively long, compared with that in a normal metal.
(The high resistivity in Sb arises mainly from a low carrier concentration, instead of a short mean
free path.) Figure 23(a) shows the electron dephasing rate 1/τφ as a function of temperature
for two thick Sb films. By comparing the measured 1/τφ(T ) with equation (10), the authors
found that the inelastic contribution 1/τi ≈ 1/τep ∝ T p in their samples to be best described
with an exponent of temperature p ≈ 2.4. This value of p is different from that (p ≈ 2 or
4) expected for the dirty limit. This non-integer temperature exponent was ascribed to the
fact that their Sb samples had qT l ≈ 0.2 T (T in kelvins), and hence these films fell in the
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Figure 23. (a) Variation of the electron dephasing rate 1/τφ with temperature for two 3000 Å
thick Sb films with ρ0 = 1130 (•), and 1650 (◦) µ	 cm. The solid curves are least-squares fits
to equation (10) with the exponent of temperature p ≈ 2.4. (b) Variation of the e–ph scattering
rate at 10 K, 1/τep(10 K), with diffusion constant D for several Sb thick films having qT l ∼ 1.
This figure was reproduced with permission from [201]. Copyright 2000 by the American Physical
Society.

intermediate-disorder regime with respect to the e–ph interaction. Lin et al also found that
1/τep is essentially insensitive to disorder (figure 23(b)), in contrast to the case for the dirty
limit where a strong dependence on l is expected. Equations (29) and (31) indeed predict a
1/τep insensitive to the mean free path with no unique value of p (which can vary from 2 to 4),
in the intermediate-disorder regime. However, Lin et al found that the theoretical value was
about 3–4 orders of magnitude lower than their experimental value. Their result might suggest
the incompleteness of the theory. Apart from the experiment of Lin et al, it has been suggested
Il’in and co-workers [212] that the theory and experiment were in agreement in NbC thin films
in the intermediate regime, over a wide temperature interval.

(f) Effect of phonon dimensionality. When one is concerned with low-temperature
problems involving thermal phonons, it is important to be sure about the effective phonon
dimensionality before a quantitative analysis of 1/τep can be made. The thermal phonons
are three dimensional if their wavelength q−1

T is shorter than the thickness of the metal film
under study. Under the opposite conditions, the thermal phonons are two dimensional. Since
q−1

T ∝ T −1, a dimensional crossover from two dimensional to three dimensional could arise in
a given sample on increasing the temperature. For a typical sound velocity of vs ≈ 3000 m s−1,
the thermal phonon wavelength 2πq−1

T ≈ 1400 T −1 Å. In the case of ‘supported’ metal films
(wires), the problem of the phonon dimensionality is complicated by the acoustic transparency
between the film (wire) and the substrate. In connection with the possible variation of
phonon dimensionality, there is long-standing interest in whether acoustic phonon confinement
might be significant in constricted geometries. Experimental investigations of electron energy
relaxation using both metal films [91,170,195] and wires [90,213] have been reported, but the
conclusions from these studies are far from clear.

In a series of careful measurements on narrow Al wires and thin films, deposited
on oxidized Si substrates, Wind et al [214] did not observe any evidence of a phonon-
dimensionality effect. Instead, they found that the magnitude and temperature dependence
of 1/τep (∝T 3) is essentially the same for films and wires. In a series of Au films and wires
deposited on GaAs substrates, Friedrichowski and Dumpich [190] also found that both the
magnitude and temperature dependence of 1/τep (∝T 3) are the same.

The influence of phonon dimensionality on 1/τep has also been studied by comparing
(constricted) ‘supported’ and ‘free-standing’ films. Intuitively, it is expected that phonon
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Figure 24. Electron–phonon scattering time as a function of temperature for an Sb thin film with
R� = 110 	. The solid line is drawn proportional to T −1.35. The inset shows the e–ph scattering
time at 1.3 K as a function of R� for several Sb thin films. This figure was reproduced with
permission from [172]. Copyright 1991 by the American Physical Society.

confinement should be pronounced in the case of free-standing structures having free surfaces.
DiTusa et al [195] have carried out electron heating measurements to determine 1/τep in a series
of CuCr films. They examined both free-standing and (silicon nitride/silicon) supported films
whose thickness and width span lengths comparable to the mean thermal phonon wavelength.
As already discussed above, their measured e–ph scattering rate was proportional to T 2,
independent of sample configuration (see table 1). In particular, they observed that the
quantization of the phonon spectrum, expected from the sample dimensions, has no effect
on the temperature dependence of 1/τep. Kwong et al [193] have compared the inelastic
e–ph scattering rate in several 220 Å thick free-standing Al films with nearly identical films
on substrates. Although their films should have been sufficiently thin to modify the three-
dimensional spectrum of the thermal phonons, they found no significant difference between
the e–ph scattering rate in free-standing and supported films. They therefore concluded that
the temperature dependence of 1/τep (∝T 3) in their thin Al films is not strongly affected by
the phonon dimensionality.

Applying an electron heating method, Liu and Giordano [172] have measured 1/τep in a
series of Sb thin films in the intermediate regime of disorder. Their films were prepared by
thermal evaporation onto glass substrates. They obtained a low value of p ≈ 1.4 and also
found that 1/τep was independent of disorder, even when the electron mean free path was
changed by a factor of 10. Their observation (figure 24) is in line with the result (p ≈ 2.4)
for Sb thick films studied by Lin et al [201]. The temperature dependence reported by Lin
et al in their thick Sb films can be reconciled with that of Liu and Giordano, if one takes into
consideration the effect of phonon dimensionality in Sb. If the thermal phonons are effectively
two dimensional in thin films but three dimensional in thick films, then it is straightforward
to obtain a value of p(≈ 2.4) that is raised by unity from its corresponding two-dimensional
value of 1.4. Taken together, these two results of [172] and [201] suggest that the effect of
phonon dimensionality is important in determining the temperature dependence of 1/τep in
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Sb. (It should be noted that these two independent (but complementary) measurements applied
distinct experimental methods, i.e. electron heating and weak-localization magnetoresistance
techniques.)

Many of the above-mentioned measurements [172, 190, 193, 195, 201, 214] are focused
on metal films and wires having the quantity qT l � 1. Apart from the film–substrate
mismatch problem, it is not known whether the effect of acoustic phonon dimensionality
might depend on the degree of disorder (i.e. qT l) in the sample. Theoretically, the role of
phonon dimensionality has often been ignored in the calculations of the e–ph scattering in
impure conductors [22,95,96,188]. Further theoretical and experimental studies are needed to
clarify the nature of phonon spectrum, speed of sound, and film–substrate interface in reduced-
dimensional structures, as well as the effect of phonon dimensionality on the temperature
dependence of 1/τep in disordered metals.

3.1.5. Comparison with three-dimensional electron–electron scattering time. In this
subsection, we evaluate the small-energy-transfer Nyquist e–e scattering time, and compare
this time with that expected for e–ph scattering, in typical bulk metals. For e–e scattering,
Schmid [215] has given a general expression for the scattering rate in three-dimensional
disordered metals, which can be expressed as

1

τee

= π

8

(kBT )2

h̄EF

+

√
3

2h̄
√

EF

(kBT )3/2

(kF l)3/2
. (38)

A similar expression has also been derived by Altshuler and Aronov [216]. The first term in
equation (38) dominates in the pure case, while the last term dominates in the strong-disorder
limit. Using typical values for the relevant parameters in a normal metal: EF ≈ 5 eV, and kF ≈
1.5×1010 m−1, one obtains an e–e scattering rate 1/τee ≈ 9×105 T 2+4.7×108 (T /kF l)3/2 s−1

(T in kelvins). The e–e scattering rate due to the first term is too small compared with the
experimental values in, e.g., figures 5, 17, and 18, although it possesses a T 2 temperature
dependence. The second term possesses a T 3/2 temperature dependence which is not consistent
with the experimental results. Moreover, this latter term predicts a scattering rate that is much
weaker than the e–ph scattering rate 1/τep(T , l). For example, in a disordered metal with
l ≈ 10 Å, this term will become compatible with the prediction of 1/τep, e.g. equation (36)
or (37), only at an extremely low temperature of ∼1 mK. Even in a very disordered metal with
l being already of the order of the interatomic spacing, this term can become compatible with
the prediction of equation (36) or (37) only at T � 10 mK. Therefore, it can be concluded
that 1/τi ≈ 1/τep � 1/τee in three-dimensional conductors [24, 32, 94]. (In one or two
cases [101,217,218], an inelastic scattering rate ∝T 3/2 has been reported in bulk measurements,
but further studies will be needed to identify the responsible mechanism here.)

3.2. Critical electron–electron scattering time near the mobility edge

Over the years, different inelastic electron processes in three-dimensional impure conductors
have been extensively studied. In addition to the e–ph scattering time in weakly disordered
metals, the inelastic scattering time in very low-diffusivity samples has also been measured. It
is often observed that the temperature and disorder dependence of the inelastic scattering rate
in such samples is distinct from those discussed thus far. More precisely, an inelastic electron
scattering rate (to be denoted by 1/τi = 1/τEE) which is linear in temperature and insensitive
to disorder is observed at liquid-helium temperatures.

Figure 25(a) shows the magnetoresistivities for a three-dimensional Sc film measured by
Li and Lin [219]. This figure indicates that the weak-localization predictions, equation (3), can
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Figure 25. (a) Normalized magnetoresistivities �ρ(B)/ρ2(0) = [ρ(B) − ρ(0)]/ρ2(B) as a
function of magnetic field for a 6310 Å thick Sc film with ρ0 = 119 µ	 cm and D = 0.58 cm2 s−1,
at (from the top down) 1.02, 1.50, 2.00, 3.50, and 5.50 K. The solid curves are the weak-localization
predictions of equation (3). (b) Variation of the electron dephasing time τφ with temperature for
Sc thick films with D ≈ 0.25 (open diamonds), 0.36 (open squares), 0.58 (open triangles), and
0.59 (open circles) cm2 s−1. The straight line is given by 1.3 × 10−10 s and is a guide to the eye.
This figure was reproduced with permission from [219]. Copyright 1997 by the American Physical
Society.

describe well the low-field data, even though the sample has a very low diffusion constant of
D ≈ 0.58 cm2 s−1. In fact, Altshuler et al [41, 220] and Gershenson et al [221] have recently
demonstrated that the weak-localization theory can describe both the temperature and magnetic
field dependences of the resistivity from the weak-localization regime up to the crossover to
the strong-localization regime. This result of figure 25(a) thus asserts that equation (3) can be
used to describe the magnetoresistivities in very low-diffusivity conductors.

The extracted values of τφ for four Sc thick films measured by Li and Lin are plotted in
figure 25(b). This figure reveals a linear temperature dependence of 1/τφ ≈ 1/τEE ∝ T for
well over a decade of temperature from 0.3 to 10 K. This value of the temperature exponent
is significantly smaller than that (p ≈ 2–4) established for the e–ph scattering rate in three
dimensions. Therefore, e–ph interaction cannot be responsible for the inelastic process in
very low-diffusivity bulk conductors. Furthermore, the figure shows that the magnitude of
1/τEE is the same for all films studied, regardless of the difference by a factor of ∼2.4 in the
level of disorder in different films. This result is strongly suggestive of a disorder-insensitive
dephasing mechanism operating in three-dimensional, very low-diffusivity systems.

Lin et al [222] have measured the temperature and mean free path dependences of
τφ(T , l) in a series of metallic, three-dimensional RuO2 and IrO2 films. Their samples were
polycrystalline and made by RF magnetron sputtering. They studied a number of samples,
covering the range of residual resistivity ρ0 ≈ 160–410 µ	 cm, corresponding to the diffusion
constant D ≈ 0.29–0.75 cm2 s−1. They found that their measured 1/τφ could be described
well by equation (10) over a wide temperature range of 2–20 K. In particular, only one inelastic
electron process was needed in their analysis to fully account for the experimental data. Their
best fitted values of the exponent of temperature p for the inelastic term for all films are
p ≈ 1.14 ± 0.23. This value of p strongly implies that the inelastic scattering rate varies
essentially linearly with temperature in these metallic oxides. Moreover, Lin et al found that,
at a given temperature of 10 K, the magnitude of the inelastic rate for all samples varied only
between (6–9) × 1010 s−1 even though the resistivities and, hence, the diffusion constants
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Figure 26. (a) Inelastic diffusion length lin = √
Dτin as a function of temperature for a p-type Si:B

bulk sample with a carrier concentration n = 1.22 nc (nc is the critical concentration for the metal–
insulator transition). The line denotes slope −0.5, or lin ∝ T −1/2. This figure was reproduced with
permission from [223]. (b) Inelastic scattering time as a function of temperature for 1 µm thick
granular Al films with room temperature resistivities (from 1 to 7) 290, 520, 940, 1640, 2190, 3530,
and 5800 µ	 cm. The solid lines drawn proportional to T −2 and T −1, respectively, are guides to
the eye. This figure was reproduced with permission from [25]. Copyright 1984 by the American
Physical Society.

differed by a factor of 2.6. This latter result strongly suggests that the responsible inelastic
process is essentially insensitive to disorder. A disorder-independent behaviour implies a non-
e–ph scattering origin. If e–ph interaction were the predominant inelastic process, a noticeable
dependence of the inelastic scattering rate on D should have been observed.

In the case of three-dimensional samples, observation of a dependence of the inelastic
scattering rate (i.e. 1/τEE) linear in temperature has been reported in thick granular aluminium
films [25], doped semiconductors [223, 224], and heavily doped conjugated polymers [225],
on the metallic side of the metal–insulator transition. For instance, figure 26(a) shows the
variation of the inelastic diffusion length lin = √

Dτin with temperature for a p-type Si:B bulk
sample which is reasonably close to the transition [223]. This figure reveals a very clear linear
T variation of the inelastic electron scattering rate between 0.3 and 10 K. Recently, these
observations have been attributed to e–e scattering in disordered conductors near a mobility
edge. Theoretically, Belitz and Wysokinski [34] have calculated the inelastic quasiparticle
lifetime due to Coulomb interaction in disordered bulk metals. Their calculation is perturbative
with respect to the screened Coulomb interaction, but for an arbitrary disorder. They found that
the inelastic e–e scattering is very sensitive to the ‘critical’ current dynamics in systems near
the Anderson transition (while the current dynamics is ‘diffusive’ in the weakly disordered
regime). In particular, they observed a linear temperature dependence of the inelastic scattering
rate. They also predicted that the inelastic scattering rate should be disorder independent.
Their predictions (the temperature as well as the disorder dependences) are in line with these
experimental results discussed above. Quantitatively, the experimental value of the inelastic
scattering rate observed in figure 25(b) is comparable with the theoretical predictions of Belitz
and Wysokinski.

Strictly speaking, in applying the Belitz–Wysokinski theory to experiment, one should
note that it may not be totally indisputable. According to their theory, a linear T dependence
of the inelastic e–e scattering rate should be realized only in strongly disordered metals in
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the vicinity of the metal–insulator transition. In particular, the prediction of a disorder-
independent inelastic scattering time holds only in the extremely disordered regime. In the
experiments performed on polycrystalline Sc [219], RuO2, and IrO2 [222] thick films, the
transport is probably still not close enough to the mobility edge. Typically, a resistivity of a
few thousand µ	 cm is what one would assume to be needed in order to be in the quantum-
critical state, for which the Belitz–Wysokinski theory is applicable. For example, Mui et al
have found a scattering rate 1/τi ≈ 1/τEE ∝ T in a series of granular Al thick films for
which ρ(300 K) ≈ 2000–6000 µ	 cm (see figure 26(b)). On the other hand, as far as the
microscopic disorder is concerned, one should realize that the polycrystalline (Sc, RuO2, and
IrO2) thick films studied by Lin et al are far more homogeneous than granular, thick Al, films.
In high-resistivity granular films where a linear temperature dependence of 1/τi ≈ 1/τEE is
observed, most of the resistivities are actually contributed from the grain boundaries while the
metal grains might only be weakly disordered. Then, it is conjectured that the criterion for the
applicability of the Belitz–Wysokinski theory might be less stringent than originally evaluated.
In short, we can say that the Belitz–Wysokinski theory is the most (and only) plausible existing
theory that contains the fundamental attributes (i.e. independence from disorder and a linear
T dependence) seen in the experimental data shown in figures 25(b), 26(a), and (b)15.

It should be stressed that the linear temperature dependence of the inelastic scattering
rate discussed in this subsection is not due to the more familiar Nyquist e–e process in two
dimensions. Here, we are concerned with samples that are strongly disordered and three
dimensional with regard to the phase-breaking length Lφ . The two-dimensional Nyquist e–e
process usually operates in weakly disordered thin films where an exponent p = 1 is firmly
established [1, 2, 7].

Crossover from e–ph scattering to critical electron–electron scattering. From our discussions
of inelastic scattering in three dimensions, we have learned that e–ph scattering dominates
the dephasing in the weakly disordered regime while critical e–e scattering dominates the
dephasing in the strongly disordered regime. These two inelastic processes have been observed,
respectively, in many different disordered metals and semiconductors. It is thus interesting
to consider whether these two dephasing processes can be seen in a single material system,
if the level of disorder in that material can be varied sufficiently. Experimentally, several
measurements have been performed in this direction. Mui et al [25] have studied a series
of three-dimensional granular Al films with room temperature resistivities varying between
300 and 6000 µ	 cm. Their results for the inelastic electron scattering times are plotted in
figure 26(b). This figure exhibits that for the samples with the lowest resistivities (samples 1
and 2) τi is approximately proportional to T −2. Samples with higher resistivities have a weaker
dependence on temperature, except near the highest measurement temperatures where their
magnitude of τi and its temperature dependence tend to the same values for the low-resistivity
specimens. These observations are very suggestive of a crossover from e–ph scattering to
critical e–e scattering as the specimens approach the mobility edge. Very recently, a crossover
of the inelastic scattering from e–ph to critical e–e scattering has also been reported by Lin
et al [228] in a series of three-dimensional CuxGe100−x films. Therefore, it is established,
both theoretically and experimentally, that the inelastic electron process in impure conductors
switches from the e–ph dephasing to the critical e–e dephasing as the level of disorder increases
and the system approaches the mobility edge.

15 In this subsection, we have focused our discussion on the theoretical prediction and experimental situation of the
critical e–e scattering in very low-diffusivity conductors. However, it may be noted that a linear T dependence of
the inelastic rate has also been predicted due to scattering of the electrons from the two-level tunnelling modes [226].
One of the difficulties with this theory is that, while it is established that tunnelling modes are predominant in metallic
glasses, their existence in disordered metals is still not much explored [227].
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3.3. Saturation of the dephasing time at very low temperatures

The electron dephasing time τφ is one of the most important quantities governing quantum-
interference phenomena. Recently, the behaviour of the dephasing time near zero temperature,
τ 0
φ = τφ(T → 0), has attracted vigorous experimental [11–13, 37–39, 53, 144, 229–231] and

theoretical [14, 15, 41, 42, 44, 232–240] attention. One of the central themes of this renewed
interest is concerned with whether τ 0

φ should reach a finite or an infinite value as T → 0.
The connection of the τ 0

φ behaviour with fundamental condensed-matter physics problems,
such as the validity of the Fermi-liquid picture [58], the possibility of the occurrence of a
quantum phase transition, and also the feasibility of quantum computing, has been intensively
addressed [241]. There are also works suggesting that a saturation of τ 0

φ might explain the long-
standing persistent current problem in metals [242,243]. Conventionally, it is accepted that τ 0

φ

should reach an infinite value in the presence of only e–e and e–ph scattering. However, several
recent careful measurements, performed on different mesoscopic conductors, have revealed
that τ 0

φ depends only very weakly on temperature, if at all, when the temperature is sufficiently
low. There is no generally accepted process of electron–low-energy-excitation interaction
that can satisfactorily explain the experimentally observed saturation of τ 0

φ . Furthermore,
measurements have demonstrated that Joule heating, external microwave noise, and very
dilute magnetic impurities cannot be the dominant source for the finite value of τ 0

φ found
in the experiments. Therefore, the microscopic origin(s) for the widely observed ‘saturation’
behaviour of τ 0

φ remain undetermined.
Recently, Mohanty et al [12] have examined the dependence of τφ on temperature for many

different samples over a wide range of temperature. Their observations are shown in figure 2716.
This figure indicates that a saturation of τ 0

φ occurs in both one- and two-dimensional metal
and semiconductor mesoscopic structures. In spite of the very different sample properties, the
saturated time for all samples seems to fall in the range of ∼10−12–10−8 s. The temperature
at which the saturation first occurs depends on the sample material, the microscopic quality
of the microstructures, and the sample geometry, etc. It can range from anywhere from a
few tenths of a kelvin to several kelvins [244, 245]. Roughly, the lower the dephasing time,
the higher the onset temperature. This observation of Mohanty et al immediately triggered
many experimental and theoretical groups asking whether the saturation might be universal
in all material (polycrystalline metal, amorphous metal, and MBE-grown semiconductor, etc)
systems and all dimensions.

In this subsection, we focus our discussion mainly on the experimental aspects of this prob-
lem. We survey existing proposals for the observed saturation of τ 0

φ as well as recent systematic
efforts aimed at testing these proposals. Several early measurements of τφ in different metals
down to about 0.1 K are also surveyed. (Experimental data on τφ in mesoscopic metals below
0.1 K were extremely limited before the recent renewed interest in the saturation problem.)

3.3.1. Electron heating and related effects. In weak-localization studies, the saturation
of τ 0

φ is inferred from the low-field magnetoresistance, which does not increase as fast as
expected with decreasing temperature. As an illustration of this effect, figure 28 shows a
plot of the magnetoresistance of a Au–Pd thick film at four different temperatures. The solid
curve is a least-squares fit to the three-dimensional weak-localization theory, equation (3),
at 6 K. A good fit is obtained in this case and, thus, the value of τφ(6 K) is accurately
determined. Similarly good agreement between theory and experiment is obtained at all
the other temperatures. However, in order to illustrate the ‘unexpectedly weak’ temperature

16 It should be noted that, in the two-dimensional Au films (closed diamonds) shown in this figure, the lowest electron
temperature achieved in the measurement was 20 mK [112].
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Figure 27. Temperature dependences of the electron dephasing time τφ in one- and two-
dimensional Au, one-dimensional Si and GaAs, and two-dimensional Au–Pd experiments. This
figure was reproduced with permission from [245].

Figure 28. Normalized magnetoresistivities �ρ/ρ2(0) = [ρ(B) − ρ(0)]/ρ2(0) as a function of
magnetic field at (from the top down) 0.6, 2.0, 3.0, and 6.0 K for a 4900 Å thick Au–Pd film
with ρ0 = 473 µ	 cm. The solid curve is a least-squares fit to the weak-localization prediction,
equation (3), at 6 K. The dashed curves are the predictions of equation (3) at (from the top down) 0.6,
2.0, and 3.0 K, assuming 1/τ 0

φ = 0 and 1/τφ ≈ 1/τep = AepT 2, where Aep is determined from
the fit at 6 K.

dependence of the magnetoresistance as T → 0, the least-squares fits at 0.6, 2, and 3 K
are not shown in figure 28. Instead, the dashed curves plotted are the ‘extrapolated’ three-
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Figure 29. (a) Electron dephasing time τφ as a function of temperature for 6000 Å thick Au–Pd
films with ρ0 = 124 (Au–Pd1e), 467 (Au–Pd4a), 473 (Au–Pd5e), and 115 (Au–Pd6e) µ	 cm.
The solid line is drawn proportional to T 2 and is a guide to the eye. (b) Normalized resistance
�R/R(T ) = [R(T ) − R(10 K)]/R (10 K) as a function of

√
T for three Au–Pd thick films. This

figure was reproduced with permission from [246].

dimensional weak-localization predictions at (from the top down) 0.6, 2, and 3 K, assuming that
the electron dephasing is totally determined by e–ph scattering (i.e., 1/τφ ≈ 1/τep = AepT 2,
where the constant Aep is already given by the least-squares fit at 6 K). This figure clearly
indicates that the observed temperature dependence of the magnetoresistance is much weaker
than the theoretical prediction, implying a dephasing process that varies much more slowly
than the expected T 2 law. In other words, the term 1/τ 0

φ is not zero in this case. It should be
stressed that the temperature-insensitive magnetoresistance at low temperatures is found in a
temperature regime where the electron gas is in thermal equilibrium with the phonons, i.e. the
weak dependence is not caused by hot-electron effects, due to either the measurement current
or external noise. This assertion is confirmed by the observation of a

√
T rise of the resistivity

with decreasing temperature down to the lowest measurement temperatures [246]. For instance,
figure 29(a) shows the measured τφ as a function of temperature for four as-sputtered Au–Pd
thick films. Comparing with figure 29(b), one sees clearly that the ‘saturation’ of τ 0

φ is observed

in a temperature regime where the sample resistance varies as −√
T all the way down to the

lowest measurement temperature. This −√
T dependence of the resistance is well described by

the three-dimensional e–e interaction theory [3]. The absence of heating effects has also been
demonstrated in other studies of the saturation [11–13,229,247], where the sample resistance
was shown to vary continuously down to very low temperatures. (For example, in the case
of one-dimensional wires, the resistance was shown to increase proportionally to 1/

√
T all

the way down to the lowest measurement temperatures [12]. The 1/
√

T dependence is due
to one-dimensional e–e interaction effects [3].) For comparison, in the case of quasi-ballistic
GaAs/AlGaAs quantum wires, Bird et al [122] have extracted estimates for the dephasing
length from the amplitude of the universal conductance fluctuations. They found that the
dephasing length remained independent of temperature below 1 K, even though the amplitude
of the fluctuations themselves increased by a factor of 4 over the same range (see section 4 and
figure 43).

Dephasing by high-frequency noise. Altshuler et al [49] have considered the dephasing of elec-
tron wave amplitudes by non-equilibrium high-frequency electromagnetic noise. They have
argued that the microwave noise can already be large enough to cause dephasing, while still too
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small to cause significant Joule heating of the conduction electrons. The reason for this was
argued to be the presence of small-energy-transfer (δE � kBT ), quasielastic, scattering. The
phase change associated with δE accumulates with time while energy does not. Numerical eval-
uation of the relative strength among the dephasing power of microwaves, the cooling power
of e–ph scattering, and the cooling power of electron out-diffusion into cold leads has been
discussed by Altshuler et al [41] and Gershenson [24]. Careful experimental measurements
have recently been designed to test these predictions. These experiments [230, 244, 248] ex-
plicitly demonstrated that direct dephasing due to radiation could not be the cause of the widely
observed saturation. By studying Au wires exposed to an externally applied high-frequency
noise, Webb et al [244] found that there was heating in their wires by the high-frequency noise,
before it affected dephasing, i.e. electron heating preceded dephasing by high-frequency noise.
From studying semiconductor open quantum dots in the presence of deliberately introduced
high-frequency noise, Huibers et al [230] also reached a similar conclusion.

Burke et al [248] have very recently investigated the effect of externally applied broadband
Nyquist noise on the intrinsic dephasing rate of electrons in two-dimensional GaAs/AlGaAs
heterojunctions at low temperatures. Their experiment was based on the idea that the Nyquist
dephasing is equivalent to the interaction of an electron with the fluctuating electromagnetic
field produced by all the other electrons in the system [49]. Therefore, it was argued that
applying a fluctuating electric field from an external circuit should affect the dephasing time
in the same way as the fluctuating electric field produced by the sample itself. Surprisingly,
however, Burke et al found no major change in the measured τφ even when their sample was
subject to large-amplitude, externally applied, voltage fluctuations. At the same time, they also
found that there was no significant change in the resistance at zero magnetic field, indicating
heating to be unimportant. This measurement therefore clearly demonstrated that a broadband
fluctuating electric field with a high amplitude has a negligible effect on dephasing. This result
strongly suggests that the effect of microwave noise on electron heating and dephasing requires
further theoretical clarification. It should be noted that this observation was also in contrast
with the result obtained when the sample is subject to a constant-amplitude, single-frequency
field. In the latter case, a suppression of weak localization (and thus, τφ) was found [244,249].
It was suspected [248] that the effect of heating and the electric-field-induced dephasing was
mingled in the latter case.

From measurements on superconductor/normal devices that were extremely sensitive to
the presence of ac electromagnetic fields, Ovadyahu [43] recently argued that no evidence
could be found for dephasing due to high-frequency noise. In another fairly quantitative
study by Lin and Kao [13], concerned with three-dimensional polycrystalline metals, this
microwave-induced dephasing picture fails as well. While Altshuler et al predicted a variation
of the dephasing time τ 0

φ ∝ D−1/3 in the most effective frequency range (∼1/τ 0
φ ), a recent

experiment by Lin and Kao found a distinct dependence of τ 0
φ ∝ D−α , with α close to or

slightly larger than 1.

Non-equilibrium dephasing. Ovadyahu [43] has explored the possibility of non-equilibrium
dephasing at low temperatures, using low-carrier-concentration In2O3−x and In2O3−x :Au thin
films. He found that, when the bias voltage exceeds some particular value, the low-field
magnetoresistance and τ 0

φ can appear to saturate while the sample resistance continues to
increase as T → 0. On the basis of this observation, Ovadyahu argued that the bias voltage or
the measuring electric field F affects dephasing more than heating (or, equivalently, the bias
voltage or the measuring electric field affects the magnetoresistance more than it affects the
resistance). Thus, it may not be sufficient to rely on R(T ) as a ‘thermometer’ and Ovadyahu
instead emphasized that such a procedure is justified only in thermal equilibrium. The criterion
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for ensuring thermal equilibrium is given by eFLE � kBT , where LE = √
DτE is the energy

relaxation length [43]. In the case of diffusive In2O3−x films with a low carrier concentration
(�1020 cm−3), LE can reach a very large value, of about 100 µm at low temperatures. (It was
noted [43] that the excess electron energy was not directly relaxed through e–ph interaction
in these samples.) Therefore, the equilibrium criterion might not be met if the biasing electric
field is not extremely small. On the other hand, in the case of three-dimensional disordered
metals, the energy relaxation is due to strong e–ph scattering and LE is several orders of
magnitude shorter than that in In2O3−x . Thus, the equilibrium criterion can be more readily
satisfied in the metal samples studied in, e.g., [13] and [246].

To summarize, in this subsection, we have shown that hot-electron effects cannot
satisfactorily explain the widely observed saturation of τ 0

φ in the experiments.

3.3.2. Magnetic impurities: spin–spin scattering. Over the years, the saturation behaviour
of τ 0

φ has often been ascribed to a finite spin–spin scattering rate, due to the presence of a
tiny amount of magnetic impurity in the sample. Such a finite scattering rate will eventually
dominate over the relevant inelastic scattering in the limit of sufficiently low temperatures,
equation (1). This idea of magnetic-scattering-induced dephasing immediately became widely
accepted since the discovery of weak-localization effects two decades ago. On the experimental
side, it is conceived that a metal mesoscopic structure can readily be contaminated with a
low level (e.g. a few ppm) of magnetic impurities. Apart from possible contamination during
sample fabrication and the measurement processes, oxidation of metal surfaces might also give
rise to (para)magnetic moments [107,250]. On the theoretical side, the calculation of Hikami
et al [46] has greatly shaped the current understanding of the effect of spin-flip scattering
on the weak-localization magnetoresistance. According to Hikami et al, magnetic scattering
can lead to decoherence between the two time-reversed wave amplitudes traversing a closed
loop, resulting in a suppression of weak-localization, and related quantum-interference, effects.
Generally, the spin–spin scattering time τs is taken to be essentially independent of temperature,
compared with the relatively strongly temperature-dependent e–ph and e–e scattering times.
With this understanding, it is natural to interpret any saturated τ 0

φ measured in the experiments17

in terms of a finite τs .
In addition to many early studies that often attributed the observed saturation behaviour

of τ 0
φ to spin–spin scattering, there are some recent studies that also argue in favour of the

role of magnetic impurities. In particular, the Saclay–MSU group [38, 39] has measured both
the energy exchange rate between quasiparticles and the dephasing time of quasiparticles in
several noble-metal Cu, Au, and Ag narrow wires. They found in one Ag wire (650 Å wide)
and one Au wire (800 Å wide) that τφ varies as T −2/3 down to 40 mK. (The T −2/3 variation is
expected from one-dimensional Nyquist e–e scattering, equation (45).) Comparing these two
complementary measurements, they concluded that a saturation of τφ occurs only in wires that
contain a small amount of magnetic impurity. In those wires where they found no anomalous
energy exchange, they also found no sign of saturation in the dephasing time (down to 40 mK).
In Cu wires (even made from a very pure source), the Saclay–MSU group always observed
a saturation of τ 0

φ . They ascribed such saturation behaviour to the presence of paramagnetic
oxides on the surfaces [252]. Figure 30 shows the variation of τφ with temperature for several
Cu, Ag, and Au wires measured by the Saclay–MSU group.

The Saclay–MSU group has measured the electron distribution function f (E) in their
metal wires driven out of equilibrium by biased currents. Their experimental results have

17 Apart from magnetic spin–spin scattering, the effect of zero-point fluctuations of impurity atoms (the scatterers) on
dephasing has also been investigated in the literature [251]. However, it is found that such an effect will be absorbed
in the renormalization of the static (i.e. time-independent) potential, leading to zero dephasing.



Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures R557

Figure 30. Electron dephasing time τφ as a function of temperature for several Cu, Ag, and Au
wires. The τφ in Ag1 and AuMSU wires shows a T −2/3 temperature dependence down to 40 mK.
The Cu wire shows a saturation of τφ below 1 K. The τφ in Au1 and Au2 wires shows a rapid increase
with decreasing temperature below 0.4 K, while it is insensitive to temperature between 0.5 and 10 K.
This figure was reproduced with permission from [39].

triggered several theoretical studies [16, 40, 253] of the inference of one-channel and two-
channel Kondo effects on the energy relaxation and dephasing rates. Very recently, they
have also performed measurements of Aharonov–Bohm oscillations in small rings (in the
presence of a high magnetic field), hoping to better clarify the role of magnetic impurities in
dephasing [254]. It should be noted that the metal wires studied by the Saclay–MSU group
are relatively clean, with a diffusion constant D ≈ 100–200 cm2 s−1 [255]. In terms of their
width, the wires are a factor of 10–20 wider than the narrowest wires (50 Å wide) studied by
Natelson et al [11] to be discussed below.

Proposal for non-magnetic origin. In contrast to the conclusion reached by the Saclay–MSU
group discussed above, Mohanty et al [12] have tested and argued for a non-magnetic origin for
the saturation behaviour of τ 0

φ . Mohanty et al first studied very pure Au wires (containing less
than 1 ppm of magnetic impurities), finding that there was always a saturation of τ 0

φ (the one-
dimensional Au wires shown in figure 27). From these measurements, they realized that both
the value of τ 0

φ and the onset temperature of saturation could be tuned by adjusting the sample
parameters such as the wire length, resistance, and diffusion constant. To explore this idea,
Webb et al [244,245] reported further measurements on several carefully fabricated Au wires,
whose onset temperature of saturation was indeed pushed down to very low temperatures.
Figure 31 shows the variations of τφ with temperature for three of their Au wires. This figure
reveals that τφ keeps increasing with decreasing temperature all the way down to 40 mK.
Despite this temperature-dependent behaviour, Webb et al argued that τ 0

φ should still saturate
in these wires18 at a temperature �40 mK.

To clarify the effect of magnetic scattering on τφ , Webb et al [12, 245] ion implanted
several ppm of Fe impurities in their pure Au wires. They found that τφ decreased by more
than an order of magnitude upon adding these impurities, but remained temperature dependent

18 Very recently, a measurement on an Au wire was performed down to 35 mK by Dikin et al [256]. A saturation of
τ 0
φ was observed at the lowest temperatures, but the reason for this was not discussed.



R558 J J Lin and J P Bird

Figure 31. Electron dephasing time τφ as a function of temperature for three high-resistance Au
wires. This figure was reproduced with permission from [244].

Figure 32. (a) The temperature dependence of the dephasing time τφ of a Au wire before and after
implantation of 2.8 ppm of Fe. (b) The temperature dependence of the spin-flip scattering time
τs for the same wire as shown in (a) and an Au wire with 7.8 ppm of Fe (top). This figure was
reproduced with permission from [245].

down to 40 mK (figure 32). Therefore, they concluded that the saturation behaviour of τ 0
φ

observed in pure Au wires, and in those samples shown in figure 27, cannot be due to magnetic
scattering19. In addition, they pointed out that saturation behaviour of τ 0

φ is also often observed
in semiconductor mesoscopic structures (see section 4). Since such structures are thought to
contain only the smallest concentration of magnetic impurities, they concluded that the widely

19 For Fe impurities in Au, the Kondo temperature TK is known to be about 0.3 K. Therefore, it has been pointed out
that, for such a ‘high’ TK , Fe impurities cannot cause a saturation of τφ below about 100 mK (�TK ). It has also been
argued that, if there exist other magnetic impurities with a much lower TK (�0.3 K), then the associated spin–spin
scattering would persist down to very low temperatures, causing a saturation in the measurement. We thank N O Birge
for pointing out this argument to us.
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observed saturation must be universal, and cannot be simply due to magnetic scattering. It
should be noted that the sample properties of the Au wires studied by Webb and co-workers
were essentially similar to those studied by the Saclay–MSU group discussed above. However,
entirely contradictory conclusions regarding the low-temperature behaviour of τ 0

φ were reached
by these two groups.

The contradicting conclusions of the Saclay–MSU group and Webb et al illustrate well the
subtlety and complexity of ‘the saturation problem’. First, it is not a trivial experimental task
to unambiguously determine the influence of magnetic scattering on τ 0

φ , because the level of
magnetic contamination is probably so low that it cannot be readily detected with state-of-the-
art material-analysis techniques. Secondly, since there are no known physical properties that
are more sensitive to spin-flip scattering than the dephasing process, the problem of whether
there is a tiny amount of magnetic contamination in the sample, thus, cannot be verified with
other complementary measurements. (Very recently, it was proposed that the influence of a
tiny amount of magnetic impurities may be detected by studying Aharonov–Bohm oscillations
as a function of magnetic field [254].) The situation becomes even more serious when lower-
dimensional systems are considered. In the case of low-dimensional structures, surface effects
due to interfaces, substrates, and paramagnetic oxidation are likely to be non-negligible. Then,
it is not straightforward to ascribe the observed saturation behaviour of τ 0

φ to either intrinsic
material properties or surface effects. On the other hand, this kind of ambiguity does not occur
in carefully designed three-dimensional experiments. Indeed, systematic measurements of
bulk samples covering a wide range of material properties might prove to be a powerful probe
of the underlying physics of zero-temperature dephasing.

3.3.3. Systematic measurements and indications of non-magnetic origin. To resolve the
underlying physics of τ 0

φ , the usual experimental approach of measuring the inelastic electron
processes via temperature-dependent magnetoresistance studies is not very useful. In the case
of inelastic scattering, the microscopic physics of the relevant electron–low-energy-excitation
interactions is extracted through the measured variation of the scattering time with temperature.
However, in the case of τ 0

φ , there is only a very weak, or no, temperature dependence
involved. It is then desirable to seek variations of τ 0

φ with the material characteristics of
the samples, such as the amount of disorder [13], the sample geometry [11], and the effect
of annealing [246]. Systematic information about the influence of material characteristics on
τ 0
φ should shed new light on the origins of the zero-temperature dephasing mechanism. In

this subsection, we therefore discuss a few experimental measurements which have provided
systematic information on τ 0

φ , over a wide range of sample properties.

Two-dimensional polycrystalline metal films. As discussed just above, an explanation for
the saturation behaviour of τ 0

φ based on magnetic scattering cannot be easily discerned
experimentally. This experimental difficulty results in several groups insisting on the presence
of magnetic impurities in the sample as the origin of saturation. In our opinion, this problem
might be resolved by studying a series of samples covering a sufficiently wide range of sample
properties. For instance, Lin and Giordano [36] performed systematic measurements of τ 0

φ on
a number of evaporated and sputtered films. Figure 33(a) shows a plot of τφ as a function of
temperature for several two-dimensional Au–Pd films. This figure indicates that every film
shows evidence for a saturation of τφ at low temperatures. The onset temperature of this
saturation also depends on the sample (but is not well defined). Comparing with equation (1),
the value of τ 0

φ for each sample can be determined. Figure 33(b) shows the variation of their
experimental τ 0

φ (labelled as τs in the figure) as a function of sheet resistance (or resistance per
square) R� for a series of sputtered and two evaporated Au–Pd thin films. In the literature in
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Figure 33. (a) Variation of the dephasing time τφ with temperature for several Au–Pd thin films:
a sputtered, annealed film with R� = 157 	 (closed squares); a sputtered, annealed film with
R� = 153 	 (closed circles); a sputtered, as-prepared film with R� = 327 	 (open triangles); a
sputtered, as-prepared film with R� = 381 	 (crosses); an evaporated film with R� = 27 	 (open
circles); an evaporated film with R� = 38 	 (open squares). (b) The magnitude of the ‘saturated’
dephasing time τ 0

φ (labelled as τs in the figure) for several Au–Pd thin films: sputtered, as-prepared
films (open circles); sputtered, annealed films (closed circles); and evaporated films (open squares).
The solid lines are drawn proportional to R−1

� and are guides to the eye. These figures were
reproduced with permission from [36]. Copyright 1987 by the American Physical Society.

the 1980s, the saturated dephasing time was most often ascribed to spin–spin scattering and
denoted by τs . However, on the basis of the result of figure 33(b), Lin and Giordano pointed
out that magnetic scattering could not be the mechanism responsible. In particular, this figure
indicates that τ 0

φ (τs) varies approximately as R−1
� , where R� = ρ0/t ∝ t−1, and t is the film

thickness. This is quite surprising since magnetic scattering should be a ‘bulk’ property, and
therefore not depend on t . (The effect of disorder on magnetic scattering and the Kondo effect
will be discussed below.)

One might argue that if the spin–spin scattering occurred predominantly at the surface
of the film, then τs (i.e. τ 0

φ ) should also vary as R−1
� , since surface scattering would become

more important as t is decreased. This speculation had been examined by Lin and Giordano.
They pointed out that, in figure 33(b), their annealed sputtered films also fall on the same
common curve as their as-prepared sputtered samples (i.e. the effect of annealing is to reduce
R� and increase τ 0

φ ). Since annealing changes R� but not t , these results are thus not consistent
with an explanation involving surface scattering. While many of their samples were prepared
on glass substrates, Lin and Giordano also studied several samples with quartz substrates,
with the idea that perhaps the spin–spin scattering was due to magnetic impurities in the glass.
However, their samples on glass and quartz substrates displayed quite similar behaviour. Since
the quartz substrates contained far fewer (magnetic) impurities, this suggests that scattering
from the substrate did not contribute significantly to the spin–spin scattering. From these
observations, they concluded that the observed saturation of τ 0

φ cannot be explained in terms
of magnetic scattering. They suggested that there might be some other, hitherto unidentified
source of electron dephasing which is both temperature independent and also dependent on
the value of R�. They further suggested that the strength of the impurity scattering which is
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Figure 34. (a) Variation of the ‘saturated’ dephasing time τ 0
φ (labelled as τ0 in the figure) with diffu-

sion constant for numerous three-dimensional polycrystalline metals: dc sputtered Au50Pd50 (cir-
cles), dc and/or RF sputtered Ag40Pd60 (squares), dc sputtered Sb (triangles), thermal-evaporation-
deposited AuxAl (solid triangles), thermal-evaporation-deposited Sc85Ag15 (solid squares), and
arc-melted V100−xAlx (solid circles). The two vertical bars at D ≈ 2.2 and 23 cm2 s−1 represent
the experimental values of τ 0

φ for dc sputtered and thermally evaporated polycrystalline Au–Pd thin

films, respectively, taken from [36]. The solid line is drawn proportional to D−1 and is a guide to the
eye. This figure was reproduced with permission from [13]. (b) Variation of the ‘saturated’ dephas-
ing time τ 0

φ (labelled as τ0 in the figure) withD for polycrystalline Au–Pd samples taken from several
independent experiments: circles [13], closed squares [246], crosses [11], closed circle [245], and
vertical bars [36]. The solid line is drawn proportional to D−1 and is a guide to the eye.

responsible for τ 0
φ could be very sensitive to the metallurgical properties of the films, which

are in turn a function of both thickness and annealing, etc. Since it is accepted that TLS are
closely associated with the presence of dynamical defects in the microstructures in the sample,
their observation of a sensitive, metallurgical-property, influence on τ 0

φ has recently inspired
several theoretical studies of the interaction between electrons and TLS [14, 15].

Three-dimensional polycrystalline metals. Lin and Kao [13] have recently studied the
electron dephasing times τφ in numerous three-dimensional polycrystalline disordered metals.
Their samples were made of various materials, using various fabrication techniques (see the
description in the caption to figure 34(a)). Since one of the major issues in this direction
of research is to study whether or not there might exist a universal saturation behaviour of
τ 0
φ , the use of many kinds of sample with distinct characteristics is highly desirable. Any

behaviour of τ 0
φ common to all these materials, if found, should bear important information

on the nature of the zero-temperature dephasing. Regardless of the very different preparation
and measurement conditions, the authors found in numerous normal metals that there is a
saturation of τφ at sufficiently low temperatures and that τ 0

φ in every sample can be determined
according to equation (1). Most surprisingly, they found that their experimental τ 0

φ varied with
the diffusion constant D with a simple power law as

τ 0
φ ∝ D−α, α � 1 (39)

where the exponent α is close to or slightly larger than 1.
Figure 34(a) shows the variation of τ 0

φ with D measured by Lin and Kao. This figure
indicates that the values of τ 0

φ for all samples fall essentially on a universal dependence.
Particularly, it reveals that all that matters in determining the value of τ 0

φ is the diffusion
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constant, regardless of the distinct material characteristics (e.g., electronic structure) of the
various samples. This figure covers about two decades of D from 0.1 to 10 cm2 s−1,
corresponding to the quantity kF l ranging from of order unity to of order 10. This observation of
τ 0
φ ∝ D−α (α � 1) is totally unexpected. Such a scaling behaviour cannot be coincidental and

deserves a full explanation. This result implies that the saturation behaviour, e.g. the functional
form of τ 0

φ with respect to disorder, might be universal for a given dimensionality and a given
kind of sample (e.g. polycrystalline) structure, while it might not be universal over different
dimensionalities and different sample structures. On the contrary, it is often conjectured that τ 0

φ

should increase with reducing disorder, at least in one and two dimensions [12,229]. Until now,
it has not been known exactly how differently τ 0

φ should behave in different dimensionalities
and in different sample structures. For comparison, the experimental τ 0

φ in the as-prepared
Au–Pd thin films considered in figure 33(b) are also indicated in figure 34(a) by the two vertical
bars. It should be noted that these Au–Pd thin films have short electron mean free paths and
are three dimensional with regard to Boltzmann transport.

The result of figure 34(a) argues against the role of magnetic scattering as the dominant
dephasing process in three-dimensional polycrystalline metals as T → 0. This is asserted
since the numerous samples considered in figure 34(a) were made from very different high-
purity sources, using very different fabrication techniques such as thermal-flash deposition, dc
and RF sputtering, and the arc-melting method. The measurements were also performed at
very different times over a period of more than four years. It is hard to conceive that spin-flip
scattering due to ‘unintentional’ magnetic contamination could have caused the ‘systematic’
variation given by equation (39). If magnetic scattering were responsible for the measured
τ 0
φ in figure 34(a), then the unintentional magnetic impurity concentration nm must vary

randomly from sample to sample, and therefore one should expect a random τ 0
φ (∝n−1

m ),
independent of disorder or the diffusion constant D. Moreover, any spin–spin scattering
that might result from surface effects such as interfaces, substrates, and paramagnetic surface
oxidation, should be largely minimized in these three-dimensional samples (while surface
effects could be significantly more important in lower-dimensional systems). Therefore, the
result of figure 34(a) cannot be simply explained in terms of magnetic scattering.

Figure 34(b) shows the measured τ 0
φ (labelled as τ0 in the figure) as a function of D for

polycrystalline Au–Pd samples taken from five existing experiments. Au–Pd is known as a
prototypical disordered metal and has been widely used to make films and wires for quantum-
interference studies [11, 36, 183, 245, 246]. As a result of the short electron mean free path,
all of the wire and film samples studied in figure 34(b) were three dimensional with respect
to Boltzmann transport. Therefore, it is justified to compare together the variation of τ 0

φ with
D in the same plot. This figure indicates that τ 0

φ follows closely the relation established
by equation (39). Since the five experiments considered in figure 34(b) were carried out in
different laboratories over a period of 15 years, this experimental observation of τ 0

φ ∝ D−α is
strongly indicative of an intrinsic material property. The observed saturation behaviour of τ 0

φ

can by no means be due to random contamination of magnetic impurities20.
The observation of figure 34(a) is still not understood. Nevertheless, this result

unambiguously indicates that the saturation of τ 0
φ in this case is certainly not due to microwave

20 One should notice that it is not always justified to compare the disorder behaviour of τ 0
φ over thin and thick films

and narrow wires made of a same material such as in figure 34(b). A comparison is only meaningful if the electron
mean free path is short and surface scattering is unimportant. One should also bear in mind that while D is used to
characterize the level of disorder in three dimensions, the relevant parameter is R� in two dimensions. These two
parameters, D and R�, are not entirely equivalent. The molar concentrations of Au and Pd in different experiments
reported in the literature are sometimes slightly different. However, for the discussion here, there is no need to
distinguish the exact compositions of the various samples used in different experiments.
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Figure 35. Electron dephasing time τφ as a function of temperature for (a) a ‘moderately’ disordered
and (b) a ‘strongly’ disordered, Au–Pd thick film before and after thermal annealing. The solid
line in (b) is drawn proportional to T −2 and is a guide to the eye. This figure was reproduced with
permission from [246].

noises, because microwave dephasing should result in a τ 0
φ ∝ D−1/3 dependence in three

dimensions [49]. This observation of an essentially inverse linear dependence of τ 0
φ on D

rather implies an approximately ‘constant’ saturated dephasing length of
√

Dτ 0
φ ∼ 1000 Å

in all samples. This in turn might imply that the more relevant quantity that governs the
underlying physics of electron dephasing near zero temperature is the decoherence length√

Dτ 0
φ , or the decoherence volume (Dτ 0

φ )d/2 in d dimensions, instead of the dephasing time

τ 0
φ itself. It should also be noted that the observation of an increasing τ 0

φ with decreasing
D in figure 34(a) is not an isolated case. In fact, a similar but less quantitative behaviour
has been observed by Noguchi et al [229] in GaAs/AlGaAs quantum wires. In their high-
mobility GaAs/AlGaAs quantum wires, Noguchi et al found that τ 0

φ increased with increasing
Fermi energy EF . In contrast, in their low-mobility wires, they found that τ 0

φ decreases with
increasing EF (see section 4 and figures 42 and 44). Since D varies essentially linearly with
EF , their result concerning low-mobility wires is in line with the observation of figure 34(a).
These observations may suggest that the behaviour of the zero-temperature dephasing can
differ substantially between clean and dirty conductors.

Effect of thermal annealing: three-dimensional polycrystalline metals. The effect of thermal
annealing on three-dimensional polycrystalline metals has been studied very recently. Lin
et al [246] have performed systematic measurements of τφ on several series of as-sputtered and
subsequently annealed Au–Pd and Sb thick films. Such controlled annealing measurements are
crucial for testing theoretical models of dephasing that invoke the role of magnetic scattering
and dynamical defects. Figure 35(a) shows a plot of the variation of τφ with temperature
for one of the as-prepared and subsequently annealed Au–Pd thick film studied by Lin et al.
This figure clearly indicates that τφ is increased by annealing. This effect is similar to that
in metal thin films, figures 33(a) and (b). At first glance, it appears that this observation is
easily explained. Suppose that annealing results in the rearrangement of lattice atoms and
a relaxation of grain boundaries, thereby making the film less disordered. Because TLS are
closely associated with defects in the microstructures, their number concentration, nTLS, is
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therefore reduced by annealing. (Theoretically, the low-energy excitations of the dynamical
defects are usually modelled by TLS.) Assuming that dynamical defects are effective scatterers
as T → 0, one can then understand figure 35(a) in terms of a TLS picture, i.e. τ 0

φ ∝ n−1
TLS.

However, it is impossible to perform a quantitative comparison of the experiment with TLS
theories [14, 15]. The difficulties lie in the facts that

(i) the number concentration nTLS in a particular sample is not known,
(ii) the strength of coupling between conduction electrons and a TLS is poorly understood,

and
(iii) the dynamical properties of real defects (impurities, grain boundaries, etc) are even less

clear.

Moreover, as is to be discussed below, further measurements of Lin et al indicate that the
nature of low-temperature dephasing in polycrystalline metals is not so straightforward. They
found that the effect of annealing on τφ is distinctly different in ‘strongly’ disordered metals.
(The film considered in figure 35(a) is referred to as ‘moderately’ disordered since it has
ρ0 ≈ 120 µ	 cm before annealing, while the film considered in figure 35(b) is referred to as
strongly disordered since it has ρ0 ≈ 500 µ	 cm before annealing.)

In addition to the moderately disordered samples, Lin et al have also carried out
measurements on Au–Pd thick films containing much higher levels of disorder. Surprisingly,
they discovered that annealing has a negligible effect on τφ in strongly disordered Au–Pd thick
films. Figure 35(b) shows the variation of τφ with temperature for a strongly disordered Au–
Pd thick film. This figure clearly demonstrates that the values of τφ for the as-prepared and
annealed samples are essentially the same, even though the resistance and hence the diffusion
constant D are changed by the annealing by a factor of more than 6. The absence of an
appreciable annealing effect in this case implies that, in addition to the usual TLS addressed
above, strongly disordered films also contain other defects that cannot be readily cured by
annealing. This ineffectiveness of thermal annealing might suggest that there are two kinds
of TLS. On the other hand, it might also suggest that, despite a large effort in this direction,
no real defects of any nature have dynamical properties which can explain the saturation of τ 0

φ

found in the experiments. Inspection of the large discrepancy in figures 35(a) and (b) strongly
indicates that low-temperature dephasing is very sensitive to the microstructures under study21.

We return to the issue of magnetic scattering. The result of figures 35(a) and (b) indicates
that magnetic scattering should play a subdominant role, if any, in inducing the saturation of
τ 0
φ . The reasons are given as follows:

(i) Suppose that there is a low level of magnetic contamination in the as-sputtered film.
Upon annealing, the magnetic impurity concentration nm should be left unchanged. If
the original saturation in the as-sputtered sample is caused by spin–spin scattering, one
should then expect the same value of τ 0

φ (∝n−1
m ) after annealing. However, the result of

figure 35(a) indicates an increased τ 0
φ with annealing, which is in disagreement with this

assumption.
(ii) Blachly and Giordano [259] have found that the Kondo effect is very sensitive to disorder,

namely that increasing disorder suppresses the Kondo effect. Along these lines, if the
original saturation of τ 0

φ found in figure 35(b) were really due to magnetic scattering,
one should then argue that thermal annealing that suppresses disorder should enhance
the Kondo effect. Therefore, a decreased τ 0

φ should be expected with thermal annealing.

21 Recent calculations [257] have indicated that the number concentration nTLS needed to give the right order of
magnitude for the dephasing time is significantly larger than what is found in real disordered metals. In terms of the
proposal of two-channel Kondo interaction as an origin for the saturation of dephasing, an estimate of the value of the
Kondo temperature is given in [258].
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Since the measured τ 0
φ does not change, even when the sample resistivity is reduced by

a factor of more than 6 by annealing, figure 35(b) cannot be reconciled with a magnetic
scattering scenario (especially if the effect of disorder is taken into account).

This picture of a weakened Kondo effect with increasing disorder is also incompatible with the
result for the moderately disordered film considered in figure 35(a), where an increased, instead
of a decreased, τ 0

φ is found after annealing. Above all, systematic annealing measurements
in both two-dimensional (figure 33(b)) and three-dimensional (figure 35) samples cannot be
reconciled with magnetic scattering being responsible for the zero-temperature dephasing time
found in the experiments.

It is worth noting that the saturation problem can be addressed better in three-dimensional,
rather than lower-dimensional, structures. This is because of the increased contrast between
the saturation and the strong dependence of τi(T ) in three dimensions. In three dimensions,
1/τi ≈ 1/τep ∝ T p, with p � 2. Such a temperature variation is much stronger than the
dominating p = 2/3 in one dimension and the p = 1 in two dimensions. (It is known that,
in lower dimensions, 1/τi ≈ 1/τee at a few kelvins and lower.) For instance, inspection of the
solid line, which is drawn proportional to T −2, in figure 35(b) clearly reveals that the measured
τ 0
φ at 0.5 K is already more than one order of magnitude lower than would be extrapolated

from the measured τep at a few kelvins. Such a large discrepancy cannot simply be ascribed
to experimental uncertainty. In contrast, in one-dimensional wires, the dominating inelastic
dephasing time obeys a much weaker T −2/3 variation, as already mentioned. In this case, any
discrepancy between the measured and extrapolated values of τ 0

φ would be much less dramatic
in the attainable range of temperature, rendering less clear cut discrimination of the presence
or not of a saturation22 of τ 0

φ as T → 0.

3.3.4. Effect of sample geometry. Natelson et al [11] have investigated the saturation problem
using thin films and narrow wires made from polycrystalline Au–Pd. The only parameter that
was varied in their experiment was the sample geometry and their results are plotted in figure 36.
In the 5 nm wires, they found τφ ∝ T −2/3 down to 80 mK, consistent with one-dimensional
Nyquist e–e scattering. In wide films, the e–e scattering theory predicts a stronger variation,
τφ ∝ T −1. However, Natelson et al found a very weak temperature dependence in their
1100 and 1250 nm wide films, signifying a saturation of τ 0

φ . This figure suggests that the
sample geometry alone can be essential for the saturation behaviour of τ 0

φ . Natelson et al
proposed that this observation provides a new constraint on theoretical models of saturation
phenomena. They also suggested that their result for the 5 nm wires allows examination of
quantum-interference phenomena in the new, molecular-length scale, while their result for
wide films is consistent with that observed previously by Lin and Giordano [36].

Taken together, figure 36, along with the observation of a pronounced
√

Dτ 0
φ ∼ 1000 Å

in three-dimensional polycrystalline metals, figure 34(a), seem to point to a coherent
empirical picture of a more pronounced saturation of τ 0

φ with increasing (higher) dimension in
polycrystalline metals. This observation deserves further investigation. It is worth noting that
in the 5 nm wires of Natelson et al, the reported Lφ (80 mK) is only ∼1250 Å, corresponding
to D ≈ 14 cm2 s−1, and τφ(80 mK) ≈ 1.1 × 10−11 s. This value of Lφ(80 mK) is not
inconsistent with the scaling relation established in figures 34(a) and (b). Such a comparison
should be meaningful since the wires and films studied by Natelson et al had short electron

22 There is another advantage of using bulk samples in the studies of τ 0
φ . Compared with the fabrication of one-

dimensional wires, the preparation of three-dimensional samples usually does not require sophisticated lithographic
processing, thereby greatly minimizing any (magnetic) contamination that might eventually act like a spin flipper at
low temperatures.
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Figure 36. Electron dephasing time τφ as a function of temperature for wide and narrow Au–Pd
thin films with thickness of 7.5 nm and various width of 5 (closed symbols), 200 (diamonds), 1100
(inverse triangles), and 1250 (triangles) nm. This figure was reproduced with permission from [11].
Copyright 2001 by the American Physical Society.

mean free paths and were three dimensional with regard to Boltzmann transport. In any case,
it is important to notice that the dephasing time in the 5 nm wires studied by Natelson et al
was greatly suppressed according to the relation τee ∝ W 2/3, where W is the width of the wire
(see equation (45)). Due to this sample-geometry suppression, their experimental value of τφ

was still very short, even at 80 mK. It would be of great interest to carry out measurements
on these wires down to lower temperatures. It would be also of decisive importance to extend
their measurements to very narrow wires made of other metals, such as Cu, Ag, or Au.

Experimentally, saturation of τ 0
φ has been observed in several metal wires [87, 200, 256]

and rings [260–262] about 50–100 nm wide. This width is generally already small enough
for the samples to exhibit one-dimensional quantum-interference effects at low temperatures.
However, this width is a factor of more than ten times larger than that of the narrowest wires
studied by Natelson et al. The result of Natelson et al seems to suggest that the characteristic
length scale that determines the saturation behaviour of τ 0

φ is significantly different from the
more familiar phase-breaking length Lφ which determines quantum-interference effects.

3.3.5. Earlier low-temperature measurements of τφ . While we have extensively discussed
the experimental observation of a finite τ 0

φ as T → 0 in several measurements, it should be
noted that there are several two- and three-dimensional experiments23 which do not display a
clear signature of saturation down to 0.1 K. We notice that, before the recent renewed interest
in the saturation problem, experimental data on τφ below 0.1 K were extremely limited in the
literature. We briefly summarize these measurements below and list the values of the relevant
parameters in table 3.

23 In the case of one dimension, besides the recent works on narrow wires by the Saclay–MSU group [38, 39] and
Natelson et al [11], Echternach et al [55] have measured τφ in 900 Å wide Au wires made by thermal evaporation.
They found the expected τφ ∝ T −2/3 between 0.1 and 5 K. They obtained τφ (0.1 K) ≈ 0.3 ns and Lφ(0.1 K) ≈ 2 µm.
Since the sample parameters of this wire are similar to those of Mohanty et al [12] and Gougam et al [38], it would
be necessary to perform measurements down to below 0.1 K in order to clarify whether there might be a saturation.
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Table 3. Values of relevant parameters for available experiments which show no signature of
saturation down to about 0.1 K or lower. The thicknesses t of three-dimensional films are listed for
comparison with the measured phase-breaking length Lφ(Tmin). Tmin is the lowest measurement
temperature in the experiment.

Sample t (µm) D (cm2 s−1) Tmin (mK) τφ(Tmin) (ns) Lφ (Tmin) (µm) Reference

1D Ag 120 40 10 11 [38]
1D Au 110 40 10 10 [39]
1D Au–Pd 12 80 0.014 0.13 [11]
1D Au 135 100 0.3 2.0 [55]

2D Au 12 100 7.5 3.0 [194]
2D Bi 10–20 100 0.2–0.8 0.45–1.3 [250]
2D Bi 10 100 0.2 0.45 [218]
2D Mg 3.9 100 12 2.2 [263]

3D Bi 0.20 0.6 100 10 0.77 [26]
3D Bi 0.40 0.6 100 10 0.77 [26]
3D Bi 0.70 33 50 0.45 1.2 [27]
3D Cu1−xOx 1.0 6 1500 10 2.4 [166]
3D Cu0.9Ge0.1 300 a — 3000 4.5 — [211]

1D Au — 0.04 2–4 — [244]
2D Au 135 0.04 60 28 [245]

a This Cu0.9Ge0.1 sample was a drawn wire and, in this case, t refers to the diameter of the wire. The resistivity and
diffusion constant for this sample were not available.

Two-dimensional films. Komori et al [250, 264] have measured τφ between 0.1 and 10 K in
several Bi thin films about 100 Å thick. Their films were prepared by thermal-flash deposition
in a moderate vacuum of 10−6 Torr onto glass substrates held at room temperature. Their
films had a high sheet resistance R�(4 K) ∼ 1000 	, corresponding to a residual resistivity
ρ0 ∼ 1000 µ	 cm. Their results are plotted in figure 37(a). Between 0.1 and 2 K, they
found τφ ∝ T −1 which is due to two-dimensional Nyquist e–e scattering, while above 3 K
they found τφ ∝ T −2 which was ascribed to e–ph scattering. Figure 37(a) indicates that the
value of τφ increases with increasing D (see the caption to figure 37 for the values of D). The
absence of saturation of τφ in this experiment was ascribed by Komori et al to a very high
Kondo temperature such that no magnetic impurity could be formed in Bi. They obtained
phase-breaking lengths Lφ(0.1 K) ≈ 0.45–1.3 µm for the various films studied.

Beutler and Giordano [218] have studied a 270 Å thick Bi film made by dc sputtering
onto a liquid-nitrogen-cooled glass substrate. They found no saturation of τφ down to 0.1 K.
Between 0.1 and 5 K, they observed τφ ∝ T −3/2 which was ascribed to three-dimensional
e–e scattering. It is not understood why the three-dimensional inelastic Nyquist process is
observed in a two-dimensional (with regard to quantum-interference transport) film. They
obtained a phase-breaking length Lφ(0.1 K) ≈ 0.5 µm.

White et al [263] have measured τφ in a 400 Å thick Mg film which was evaporated
onto a glass substrate held at 4.2 K. Between 0.1 and 10 K, they found that τφ ∝ T −1

which was ascribed to two-dimensional e–e scattering. They obtained a phase-breaking length
Lφ(0.1 K) ≈ 2 µm.

For a 110 Å thick Au film made by evaporation onto an oxidized Si wafer held at
room temperature, Bozler and co-workers [194] reported τφ ∝ T −1 between 0.1 and 1 K,
which was ascribed to two-dimensional e–e scattering. They obtained a phase-breaking length
Lφ(0.1 K) ≈ 2.9 µm.

It would be of great interest to perform measurements down to lower temperatures to check
whether the temperature dependence of τφ in the above-mentioned metal thin films remains as
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Figure 37. (a) Electron dephasing time τφ (labelled as τE in the figure) as a function of temperature
for four Bi thin films with diffusion constant (film thickness) = 20 (120), 16 (110), 12 (97),
and 10 (91) cm2 s−1 (Å), respectively, for No 1, 2, 3, and 4. This figure was reproduced with
permission from [250]. (b) Electron dephasing time τφ (labelled as τE in the figure) as a function
of temperature for three Bi films with thickness of 300, 2000, and 4000 Å. The 300 Å thick film is
two dimensional and in it τφ ∝ T −1, while the 2000 and 4000 Å thick films are three dimensional
and in them τφ ∝ T −2. This figure was reproduced with permission from [26].

expected from the e–e scattering theory. It is also of importance to ask why Bi (and Mg) reveal a
much less pronounced signature of saturation than other metals. This is particularly intriguing
since Bi (and Mg) are highly oxidizable compared with other metals, and such oxidation could
result in serious inhomogeneities in the microstructure of the sample. Furthermore, it should
be noted that in those experiments mentioned above, the samples were made only in a typical,
but not extremely high, vacuum. They were deposited only on typical glass substrates, rather
than much purer quartz substrates. It would be worth exploring why the saturation behaviour
of τ 0

φ is much less evident, or even absent, under such circumstances of ‘minimal precaution’.
In an elaborate effort to extend electrical transport measurements to very low temperatures,

Mueller et al [112] have succeeded in cooling a 76 Å thick amorphous Au film down to 20 mK.
Above 20 mK, they observed a logarithmic variation of the resistance with temperature, while
below 20 mK they found no change in either the resistance or magnetoresistance curves,
confirming that the lowest electron temperature was about 20 mK. The logarithmic temperature
variation of the resistance is due to two-dimensional weak-localization and e–e interaction
effects [1,3,4]. More strikingly, they observed an inelastic electron dephasing rate 1/τφ ∝ T 1/2

between 20 and 300 mK. Mueller et al interpreted their result in terms of electron scattering by
magnetic impurities. They further explained that their measured magnetic scattering rate was
not due to single-Kondo-impurity behaviour, but intimately connected with impurity–impurity
interactions [105]. They obtained a phase-breaking length Lφ(20 mK) ≈ 3 µm.

Three-dimensional films. Komori et al [26] have measured τφ in 2000 and 4000 Å thick
Bi films. Their films were prepared by repeating many times thermal-flash deposition and
subsequent oxidation of a small amount of Bi on glass substrates. The structure of their films
was composed of small particles of Bi (which had an average diameter of ∼40 Å) coupled
through a thin oxide. They found a τφ ∝ T −2 dependence between 0.1 and 20 K, which was
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ascribed to e–ph scattering. They obtained a phase-breaking time τφ(0.1 K) ≈ 1 × 10−8 s,
independent of film thickness. Their results are plotted in figure 37(b).

Koike et al [27] have measured τφ in a 7000 Å thick granular Bi film made by evaporation
in the presence of an oxygen atmosphere. The grain size of the film was ∼380 Å, and the
resistivity was ρ(4 K) ≈ 2800 µ	 cm. They found a τφ ∝ T −3/2 dependence between 0.05 and
5 K, which was ascribed to three-dimensional e–e scattering. They obtained a dephasing time
τφ(50 mK) ≈ 4.5 × 10−10 s, corresponding to a dephasing length Lφ(50 mK) ∼ 1.2 µm.
However, it should be pointed out that, in the same experiment, a clear indication of a
saturation of τ 0

φ was found in another 7000 Å thick Bi film with a slightly higher resistivity of
ρ(4 K) ≈ 3800 µ	 cm. In particular, the saturation in that film occurred only at T � 0.1 K,
but not at a temperature above 0.1 K. This result poses the serious question of whether the
dephasing time in Bi samples might keep increasing as T → 0. To the best of our knowledge,
this is the only Bi sample in the literature on which measurements have been made down to a
temperature below 0.1 K.

Aronov et al [166] have measured τφ in a 1 µm thick granular Cu1−xOx film made by
RF sputtering in a dilute oxygen atmosphere onto a glass substrate. Between 1.5 and 20 K,
they found a τφ ∝ T −3 dependence which was ascribed to e–ph scattering. They obtained
a phase-breaking length Lφ(1.5 K) ≈ 2.5 µm. Unfortunately, no data were reported for the
lower-temperature regime (�1.5 K) where a stringent test of the saturation problem is critically
needed.

It should be noted that, in each of the three-dimensional experiments [26, 27, 166] just
discussed, the sample thickness was exceeded by the decoherence length Lφ measured at the
lowest temperature. That is, while three-dimensional weak-localization theory was applied
at all temperatures, these films should have been treated as two dimensional with regard to
weak-localization effects at sufficiently low temperatures. A more self-consistent analysis of
these measurements is therefore desirable24.

Eschner et al [211] have studied a drawn, high-resistivity Cu0.9Ge0.1 wire of 0.3 mm
diameter. They found a τφ ∝ T −3 dependence between about 3 and 70 K, which can
be accounted for by e–ph scattering. Unfortunately, no data in the more relevant lower-
temperature regime for the saturation problem were reported. Measurements on these samples
down to much lower temperatures would be crucial for clarifying the saturation problem in
three dimensions.

An alternative interpretation. As discussed, Webb et al [244] have measured τφ in carefully
tailor-made Au wires and films. They found no sign of saturation in certain samples down
to 40 mK (figure 31). However, they argued that this was because the saturation in these
samples had been pushed down to lower, experimentally inaccessible, temperatures. In
another experiment, they were able to demonstrate a Au thin film which has an extremely long
dephasing time τφ(40 mK) ≈ 60 ns (which is about a factor of 10 longer than ever reported
in a mesoscopic system), corresponding to a dephasing length Lφ(40 mK) ≈ 28 µm [245].
However, they proposed that a saturation of τφ should be still present in this film, but that it
should occur only at ∼1 mK. Webb et al have suggested that the independent single-electron
picture will not hold in most mesoscopic systems at such low temperatures, and that the
saturation of τ 0

φ as T → 0 is intrinsic [58, 245].

24 In the case of measurements on one-dimensional wires down to very low temperatures, another problem can arise in
the comparison of weak-localization theory and experiment. While the weak-localization theory assumes an ensemble
average, in the experiment this average might be far from complete, especially when the inferred decoherence length
is of order several µm long. This situation can become serious in measurements where the wires were not made
sufficiently long.
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4. Dephasing in semiconductor mesoscopic structures

In this section, we review the results of experimental studies of dephasing in mesoscopic,
semiconductor quantum wires and dots. We first of all briefly review the different theoretical
predictions for electron dephasing due to e–e scattering in wires and films, after which we
consider the results of experimental studies of dephasing in dirty and quasi-ballistic quantum
wires. These studies demonstrate that, at temperatures below 10–20 K, the dominant dephasing
mechanism is due to e–e, rather than e–ph, scattering. Two contributions to this scattering
are identified, involving small, and large, energy transfer. While these results can be well
understood within the framework of established theories, an unexpected finding in many
experiments is that, at temperatures below a kelvin or so, a ‘saturation’ of the dephasing
time occurs, reminiscent of that discussed above (section 3) for metallic mesoscopic systems.
A similar saturation is also found to occur in transport studies of ballistic quantum dots, as we
also review in this section. Finally, we consider the results of a smaller group of experiments,
which use a variety of different approaches to extract estimates for the dephasing time in
ballistic, two-dimensional-electron-gas systems. An interesting finding here is evidence for
a massive enhancement of the phase-breaking length, observed in the quantum-Hall regime
where current flows via edge states.

4.1. Electron interactions and dephasing in dirty wires and films: a theoretical overview

In section 3 it was shown that, in three-dimensional systems, the e–ph interaction provides
the dominant mechanism for dephasing, with the e–e interaction being much less effective.
In lower dimensions, such as in thin films and quantum wires, in contrast, we will see that
the experimental results are consistent with the dominant source of dephasing as arising from
e–e interactions. We will furthermore see that, dependent on the range of temperature, these
interactions may involve either small, or large, energy transfer. Before discussing the results of
these studies, however, we first provide a brief overview of the different theoretical predictions
for dephasing due to e–e scattering in dirty films and wires.

In any discussion of dephasing due to e–e scattering, it is important to distinguish between
the manner in which the phase of the wavefunction, and the electron energy, are randomized
by means of the Coulomb interaction. Our starting point for this discussion is the conceptual
framework of Fermi-liquid theory, in which it is typical to calculate the timescale over which
the excess energy of a quasiparticle, excited beyond the Fermi level, is relaxed by means of
the electron interaction. In three dimensions, and in the absence of disorder, it is well known
that the quasiparticle lifetime, due to this interaction alone, scales with temperature as [265]

1

τi,ee
∼ 1

h̄

(kBT )2

EF

, (40)

where the expression above is accurate to within a numerical prefactor of order unity. (For
the sake of consistency, in this section we will use the notation τi,ee to represent the inelastic
lifetime due to e–e scattering and τee to denote the dephasing time due to this scattering.) In
lower dimensions, and, in particular, in the presence of disorder, the variation of the inelastic
lifetime with temperature is considerably more complicated. Giuliani and Quinn [266] used
a perturbative approach to calculate to inelastic Coulomb lifetime of an electron in a clean
two-dimensional electron gas and obtained the result
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− ln 2 − 1

]
. (41)
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Here, QT F = 2m∗e2/εh̄2 is the two-dimensional Thomas–Fermi screening wavevector
and equation (41) is expected to be valid at low temperatures, where the thermal energy
is much smaller than the Fermi energy. As can be seen from this equation, a T 2 ln T

variation of the inelastic lifetime is expected in the clean-metal limit, and evidence for this
dephasing mechanism has been found in non-equilibrium transport studies of high-mobility
two-dimensional-electron-gas systems [267], as we discuss in more detail below. A very
different functional dependence on temperature is obtained when the influence of disorder is
taken into account, however [54,215,268,269]. Physically, an important effect of the disorder
is to introduce strong spatial correlations among eigenstates that are nearby in energy, thereby
modifying the nature of the e–e interaction. Abrahams et al [268] computed the inelastic
lifetime in dirty metals due to electron scattering and found that, in two dimensions, the
variation of 1/τi,ee is modified to a T ln T form, while in other dimensions a T d/2 variation
is expected. While these authors evaluated the inelastic time from the self-energy of the one-
particle electron Green function, in later work Fukuyama and Abrahams [269] computed the
lifetime of the particle–particle diffusion propagator in the momentum representation. They
also found that, in the presence of disorder, the relaxation rate in two dimensions is modified
to a T ln T form, and their results may be summarized as

1

τi,ee
= π

2

(kBT )2

h̄EF

ln

(
EF

kBT

)
, kBT τ > h̄ (42)

1

τi,ee
= kBT

2EF τ
ln

[
4(EF τ)2Dκ2

h̄kBT

]
, kBT τ < h̄. (43)

Here, κ is the effective inverse screening length and, within the Thomas–Fermi approximation,
κ = 1/QT F . D is the diffusion constant. Equation (42) is the result for the clean-metal limit
(EF τ/h̄ → ∞), while equation (43) shows the modification that arises in the dirty-metal limit.

While the various calculations described above yield expressions for the inelastic lifetime
due to electron scattering, it is important to realize that they are not necessarily equivalent
to a calculation of the dephasing time per se. In particular, as was pointed out by Altshuler
et al [35], at low temperatures it is possible that e–e scattering events may destroy the electron
phase without relaxing its excess energy. This process of dephasing via multiple-scattering
events, each involving small energy transfer, is known as Nyquist dephasing, since it can
essentially be viewed as arising from thermal fluctuations in the background electromagnetic
field, generated by the ensemble of electrons [35]. At temperatures where this Nyquist
mechanism is effective, τee and τi,ee are thus quite distinct from each other. Altshuler et al
have computed the temperature dependence of the dephasing time due to this mechanism and
find the following results for two and one dimensions, respectively:

1

τee

= kBT

2πν(0)Dh̄2 ln(πν(0)Dh̄), (44)

1

τee

=
[

kBT√
DWν(0)h̄2

]2/3

. (45)

In these expressions, ν(0) is the density of states at the Fermi level and W is the width of a
one-dimensional channel. As is usual in discussions for weak localization, the transition from
one- to two-dimensional behaviour is taken to occur once the phase-breaking length becomes
shorter than the channel width. Early experimental confirmation of this Nyquist mechanism
were given in studies of dirty-metal wires [87, 214].

Having introduced the various predictions for the dephasing, and energy relaxation, rates
due to e–e scattering in dirty-metal systems, we now compare these forms with the results of
experimental studies of semiconductor quantum wires.
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Figure 38. The temperature dependence of the dephasing rate, determined from measurements
of the weak-localization magnetoresistance, in a two-dimensional electron gas (triangles) and a
narrow quantum wire (squares). Both samples were realized in a GaAs/AlGaAs heterojunction.
This figure was reproduced with permission from [71]. Copyright 1987 by the American Physical
Society.

4.2. Dephasing in dirty and quasi-ballistic quantum wires

A thorough study of the origins of low-temperature dephasing in diffusive quantum wires was
undertaken by Choi et al [71], who extracted values for the dephasing time from the weak-
localization magnetoresistance of GaAs/AlGaAs quantum wires. The results of their analysis
are shown in figure 38, in which the temperature-dependent variation of the dephasing rate is
plotted for a narrow channel of effective width 0.21 µm, and is compared to the corresponding
variation obtained in measurements of a two-dimensional Hall-bar structure. For both the two-
dimensional sample, and the narrow wire, the authors found the variation of the dephasing time
with temperature to be well described as a combination of e–e scattering rates, involving small
and large energy transfer. For a quasi-one-dimensional wire, the combined dephasing rate due
to these mechanisms may be written as

1

τφ

= π

2

(kBT )2

h̄EF

ln

(
EF

kBT

)
+

[
kBT√

DWν(0)h̄2

]2/3

. (46)

The first term on the right-hand side of this equation is just the inelastic electron scattering rate
due to e–e scattering, obtained by Fukuyama and Abrahams [269] for clean, two-dimensional,
metals (equation (42)). That is, this term represents the rate at which e–e scattering occurs with
large energy transfer. The second term in equation (46) is the Nyquist rate for e–e scattering
with small energy transfer, as calculated by Altshuler et al [35] in the dirty-metal regime. The
solid curve through the narrow-channel data of figure 38 is a least-squares fit to the form

1

τφ

= ĀT 2 + B̄T 2/3, (47)

and the values of the fitting coefficients (Ā = 4.23×1010 s−1 K−2, B̄ = 7.25×1010 s−1 K−2/3)
were found to be in reasonable agreement with the predictions of equation (46). These values
indicate that, at temperatures of order a kelvin, the Nyquist mechanism dominates dephasing,
while at higher temperatures, large-energy-transfer e–e scattering becomes dominant. This
basic scenario of temperature-dependent e–e scattering has subsequently been confirmed
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Figure 39. The left-hand panel shows the positive magnetoconductance at series of temperatures,
for the split-gate quantum wire shown in the inset. Solid lines represent the result of fits to
one-dimensional weak-localization theory. The extracted phase-breaking length and its variation
with temperature are shown in the right-hand panel. The solid line represents a T −1/3 power-
law variation. This figure was reproduced with permission from [128]. Copyright 1986 by the
American Physical Society.

in a number of different studies. Thornton and co-workers used the weak-localization
magnetoresistance [128], and the amplitude of the universal conductance fluctuations [270],
to determine the temperature dependence of the dephasing time in narrow GaAs/AlGaAs
channels. The transport in these structures was quasi-ballistic in nature, although the
authors used the corresponding diffusive theories [54,115] for weak localization and universal
conductance fluctuations to extract the dephasing time. In either approach, the temperature
dependence of the extracted dephasing time was found to be well described by invoking the
Nyquist mechanism alone (figure 39). This result is not necessarily inconsistent with the
findings of figure 38, since Thornton and co-workers focused on the low-temperature range,
where Choi et al also found the Nyquist term to be dominant. The Nyquist term has also been
observed in studies of narrow Si MOSFETs [271], in which estimates for the dephasing time
were extracted from the weak-localization magnetoresistance. In these diffusive structures, a
crossover to one-dimensional Nyquist scattering was observed at temperatures below a kelvin.
In other studies of quasi-ballistic GaAs/AlGaAs quantum wires, the combined scattering rate
of equation (46) was found to give reasonable agreement with the results of experiment at
temperatures exceeding 30 K, suggesting that e–e scattering can remain the dominant source
of dephasing at temperatures as high as these [121]. In a somewhat different approach,
evidence for e–e scattering with small and large energy transfers has been found in quasi-
ballistic GaAs/AlGaAs rings, in which the temperature-dependent decay of the Aharonov–
Bohm oscillations was exploited as a means to extract the dephasing time [272]. In another
noteworthy study by Linke et al, the dephasing of equilibrium and non-equilibrium electrons
in a quasi-ballistic GaAs/AlGaAs quantum wire was investigated [273]. Interestingly, these
authors found the temperature dependence of the dephasing time of equilibrium electrons to be
consistent with the Nyquist mechanism, over the entire temperature range from 0.3 to 10 K. In
non-equilibrium studies, however, a variable dc voltage was superimposed on top of the small
ac measuring bias, and was found to give rise to a suppression of weak localization. In order
to account for this suppression, it was found necessary to assume that e–e scattering involves
only large energy transfer, in contrast to the finding of the equilibrium studies.
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The various studies discussed above provide a consistent picture, in which the dephasing
of electrons at low temperatures (<30 K) is understood to be dominated by the contribution
of e–e scattering. A common finding of many experiments is that, at temperatures above
a few kelvins, this scattering is dominated by large energy transfer, as expected for clean
metals [269]. At lower temperatures, however, coherence is typically lost through a
series of quasielastic events, in which electrons scatter from noise-like fluctuations in the
electromagnetic environment [35]. A very different picture of dephasing was obtained in
the study by de Graaf et al [274], however. These authors studied the magnetoresistance of
a short, narrow, constriction formed in a Si MOSFET by a multi-gate technique. A weak-
localization peak was observed in the vicinity of zero magnetic field and was used to extract
estimates for the dephasing time. The short length of this channel (<1 µm) required the
authors to use the modified expression for the weak-localization magnetoresistance, developed
by Chandrasekhar et al [78], to determine the dephasing time. The results of their analysis
are indicated in figure 40, in which the temperature-dependent variation of the dephasing time
in a narrow constriction (open circles) is compared to that obtained for the two-dimensional
electron gas of the MOSFET (filled triangles). The data for the constriction were suggested
to be consistent with the predicted form for the dephasing length due to e–e scattering in one
dimension with large energy transfer [268, 275]:

Lφ =
[
πWν(0)h̄D

a
√

2
LT

]1/2

∝ T −1/4, (48)

whereLT is the thermal coherence length. While some evidence for aT −1/4 variation was found
in much earlier studies of one-dimensional MOSFETs [275], it is very difficult in experiment to
clearly distinguish this power-law dependence from that expected for one-dimensional Nyquist
dephasing. Indeed, in figure 40 we have added the dashed line to indicate a T −1/3 variation of
the dephasing length. Given the scatter in this figure, one might argue that this variation is in
fact consistent with the experimental data.

A common feature of all theories for e–e scattering in mesoscopic systems, regardless of
their specific assumptions, is that they predict an infinite dephasing time in the limit of zero
temperature. As a number of experiments have now demonstrated, however, a ‘saturation’ of
the dephasing time may occur at low temperatures, implying the existence of a finite dephasing
rate on extrapolation to absolute zero. One of the earliest observations of such saturation was
reported by Choi et al [71], in their studies of short, wet-etched wires (figure 41). These
authors extracted values for the dephasing time from weak-localization studies and found clear
evidence for saturation once the phase-breaking length becomes comparable to the length of
the wire. This behaviour is easily understood within the framework of theory, however, and
can be attributed to a transition to zero-dimensional weak localization [276]. The basic idea is
that, as the zero-dimensional limit is approached, the phase-breaking length that appears in the
various weak-localization expressions should be replaced with the effective length scale [71]:

1

L2
eff

= 1

L2
φ

+
4π2

L2
. (49)

Equation (49) clearly shows that, once Lφ becomes comparable to L/2π , such zero-
dimensional effects are expected to become important [276]. Indeed, by comparing the
effective length extracted from the weak-localization magnetoresistance of the short wire to
the phase-breaking length determined at the same temperature in a two-dimensional Hall bar,
equation (49) has been used to extract estimates for the total length of the wire, and these
values were found to be in good agreement with its known lithographic dimensions [71].

In contrast to the experiment of Choi et al discussed above, saturation of the phase-
breaking length on scales much shorter than L/2π has also been observed in a number of
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Figure 40. Variation of the phase-breaking length with temperature in a narrow-channel
Si MOSFET. The solid triangles represent the results of experiments performed on the two-
dimensional electron gas of the MOSFET, while the open circles represent the result obtained
with the narrow channel formed. The open squares correspond to the results of fits to the phase-
breaking length in two dimensions. The dotted lines show the indicated power-law variations,
while the dashed line has been added by us and indicates a variation of Lφ ∝ T −1/3. This figure
was reproduced with permission from [274]. Copyright 1992 by the American Physical Society.

Figure 41. Leff from a short channel (open triangles) and Lφ from a long channel (open squares).
The crosses indicate values of the quantity L/2π , obtained from the data using equation (49).
This figure was reproduced with permission from [71]. Copyright 1987 by the American Physical
Society.

experiments and cannot be explained in terms of a dimensional crossover. This observation
strongly suggests that the saturation itself does not result from the influence of the leads on
coherence in the wire, but is rather associated with dephasing processes that arise within
the wire itself. One of the earliest reports of such saturation was provided by Ikoma and
co-workers [77], who later undertook the most extensive study of this effect [229]. In this
latter report, these authors extracted values for the dephasing time from weak-localization
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Figure 42. The temperature dependence of the dephasing time in a number of different
GaAs/AlGaAs quantum wires. Open symbols denote split-gate quantum wires while filled ones
correspond to those realized by focused ion-beam implantation. This figure was reproduced with
permission from [229]. Copyright 1996 by the American Institute of Physics.

Figure 43. The open circles denote the value of the phase-breaking length, obtained from an
analysis of the conductance fluctuation amplitude (filled circles) in a GaAs/AlGaAs quantum wire.
This figure was reproduced with permission from [122].

studies of quasi-ballistic GaAs/AlGaAs quantum wires, realized by both focused ion-beam
implantation and the split-gate technique. The wires were fabricated in heterojunctions with
a variety of different spacer-layer thicknesses and the results of their study are summarized
in figure 42. In almost all of the samples, a saturation of the dephasing time is found at
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Figure 44. The dependence of the ‘saturated’ dephasing time on mobility in a number of different
GaAs/AlGaAs quantum wires. Open symbols denote split-gate quantum wires while filled ones
correspond to those realized by focused ion-beam implantation. This figure was adapted with
permission from [229]. Copyright 1996 by the American Institute of Physics.

low temperatures, while at higher temperatures, up to 30 K, the data appear consistent with
dephasing due to large-energy-transfer e–e scattering. By varying the drive current used in
the magnetoresistance measurements over more than two orders of magnitude, the authors
were able to establish that the saturation is not caused by the increased importance of Joule
heating at low temperatures [77]. This result is consistent with the findings of Bird et al [122],
who extracted estimates for the phase-breaking length from the amplitude of the conductance
fluctuations observed in quasi-ballistic, wet-etched, GaAs/AlGaAs quantum wires. These
authors found that the phase-breaking length remained independent of temperature below a
kelvin, even though the amplitude of the fluctuations themselves increased by a factor of
four over the same range (figure 43). The temperature dependence of the fluctuations in this
figure is understood to result solely from the corresponding variation of LT . We point out
here that the physical significance of the phase-breaking and thermal diffusion lengths has
been discussed by Lee et al [115]. These authors point out that the phase-breaking length
may be viewed as the length scale over which the phase of the electron is destroyed through
its dynamic interactions with its environment, while the thermal diffusion length describes a
static dephasing, which arises due to the thermal smearing of the electron energy. For the
data shown in figure 43, the T −1/2 variation of the fluctuation amplitude is consistent with a
temperature-independent Lφ in equation (15), in which case the temperature dependence of
the fluctuations arises solely from the variation of LT alone. From figure 42, it is apparent
that the saturated value of the dephasing time increases with increasing mobility (that is, with
increasing spacer-layer thickness), a trend that was also noted in the study by Bird et al [122].
In figure 44, the variation of the saturated dephasing time with mobility is summarized for both
ion-beam implanted and split-gate wires [229]. While there is clearly a consistent difference
between the two types of wire, we see from this figure that the saturated value of τφ scales
approximately with mobility as τφ ∝ µ (for high-mobility samples).
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Subsequent to the observations of Hiramoto et al [77], a low-temperature saturation of the
dephasing time was reported by a number of different authors. A deviation from the expected
Nyquist scattering rate was observed by Pooke et al [271] in narrow Si MOSFETs, once
the temperature was lowered below 0.3 K. Fukai et al [150] studied the weak-localization
magnetoresistance of quasi-ballistic, on-facet, GaAs/AlGaAs quantum wires, grown by
selective molecular-beam epitaxy. These authors found a transition from a Nyquist-consistent,
to a saturated, dephasing time at temperatures below 0.4 K, simultaneous with the emergence
of a positive term in the weak-field magnetoresistance. Since the latter effect is indicative of
spin–orbit scattering in semiconductors [277], Fukai et al argued that the observed saturation
of the dephasing time could be attributed to the increased importance of spin–orbit scattering
at low temperatures. Aihara et al [278] used reactive-ion etching to fabricate quasi-ballistic,
GaAs/AlGaAs heterojunction rings, and determined the dephasing time from the temperature-
dependent decay of the Aharonov–Bohm oscillations. At temperature above a few kelvins,
the dephasing time showed the T −2 variation expected for dephasing in clean metals [269].
At lower temperatures, however, a saturation was found. In the study discussed earlier by de
Graaf et al [274], a saturation of the dephasing time was actually found in the two-dimensional
electron gas of the MOSFET at temperatures below 0.5 K (figure 40). Furthermore, for the
narrow-channel data of figure 40, if we assume that the variation of the phase-breaking length
is closer to a T −2/3 variation, the dephasing time of this structure shows possible evidence for
saturation at temperatures below 0.2 K.

The observation of a low-temperature saturation of the dephasing time is not only limited
to GaAs/AlGaAs heterojunctions and Si MOSFETs, but has also been reported for Si/SiGe
quantum wires, and two-dimensional-electron-gas systems, and InGaAs/InAlAs wires and
rings. Kurdak et al [272] used wet etching to fabricate quasi-ballistic wires and rings
in InGaAs/InAlAs heterojunctions, and used the weak-localization magnetoresistance and
Aharonov–Bohm oscillations to extract an estimate for the dephasing time. In both types
of structure, evidence for saturation was found at temperatures below 0.35 K. van Veen
et al [279] used reactive-ion etching to fabricate quasi-ballistic, Si/SiGe quantum wires and
obtained values for the dephasing time from the weak-localization magnetoresistance. A weak
temperature dependence of this parameter was found below a kelvin, suggestive of saturation.
Interestingly, a saturated dephasing time has even been found in studies of the two-dimensional
electron gas in Si/SiGe heterojunctions [280], and in GaAs/InGaAs/GaAs single quantum
wells [281] and GaAs/AlGaAl quantum wells [282]. Many of the findings on the saturation
of the dephasing time in semiconductor wires are summarized in table 4.

In contrast to the above, in the more recent investigations of Khavin et al [283], dephasing
was studied in GaAs/AlGaAs quantum wires, in the region near the crossover from strong to
weak localization. Estimates for the dephasing time were extracted from the one-dimensional
weak-localization magnetoresistance, and the values of Lφ inferred in this manner were found
to be in excellent agreement with the predictions of equation (45). While no evidence for
saturation was found in the experiment, the lowest-temperature data reported in this study were
obtained at 0.7 K, so the possibility of saturation having its onset at much lower temperatures
cannot be discounted.

4.3. Dephasing in ballistic quantum dots

In comparison to the situation in metal and semiconductor quantum wires, the problem of
dephasing in ballistic quantum dots has thus far attracted much less attention. Experimental
investigations have focused exclusively on the coherent characteristics of GaAs/AlGaAs gated
quantum dots, in which structure estimates for the dephasing time have been extracted by
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Table 4. Transport parameters for different dephasing experiments on semiconductor quantum
wires (1D) and dots (0D). The sheet carrier density (ns ) and mobility (µ) values shown here
are typically those reported for the two-dimensional electron gas, prior to processing to form the
microstructure. Ton is the temperature at which the saturation is observed to onset, while τ 0

φ and

L0
φ are the reported values of the saturated dephasing time, and length, respectively (in those

experiments where no saturation was reported, the values for τφ and Lφ at 1 K are indicated).

Sample ns (1011 cm−2) µ (103 cm2 V −1s−1) Ton (K) τ 0
φ (ps) L0

φ (µm) Reference

1D GaAs/AlGaAs 5.2 170 2 30 — [278]
1D GaAs/AlGaAs 1.4–5.4 53–490 > 1 260–52 4–6 [122]
2D GaAs/AlGaAs 1.6 27 None 30 @ 1 K — [71]
1D GaAs/AlGaAs 1.6 27 None 10 @ 1 K — [71]
1D GaAs/AlGaAs 35 34 0.4a — 2 [150]
1D GaAs/AlGaAs 1.7–28 2–780 < 3 0.5–100 — [229]
1D GaAs/AlGaAs 5.6 420 < 0.5 — 4 [272]
1D GaInAs/AlInAs 7–17 70–160 < 0.5 — 3–6 [272]
1D GaAs/AlGaAs 6.2 47 < 4 — 2 [121]
1D GaAs/AlGaAs 4 200 None — 2 @ 1 K [270]
1D Si/SiGe 8.8 86 0.5 — < 2 [279]
0D GaAs/AlGaAs 4.4 400 0.15 200 — [142]
0D GaAs/AlGaAs 3.5 1600 0.3 200 — [136]

a In this case the authors clearly identified that the saturation resulted from the spin–orbit scattering time becoming
the shortest timescale in the problem (i.e. τso < τφ ).

studying the characteristics of the fluctuations, and the zero-field peak, observed in their low-
temperature magnetoresistance [135–137, 142, 144, 230, 284, 285]. The general behaviour
revealed in these studies is fairly consistent, in spite of the different methods that are used to
extract the dephasing time. At temperatures close to a kelvin, the dephasing time is found to
exhibit a power-law scaling with temperature, which in most cases appears to be best described
by τφ ∝ T −1 (figure 45). A power-law variation of this type has actually been obtained by
Takane, who considered the dephasing of ballistic electrons due to Coulomb interactions in a
chaotic quantum dot [286]:

1

τφ

∼ λF

W

kBT

h̄
, (50)

which expression is valid in the limit where the width of the leads (W ) is much larger than the
Fermi wavelength (λF ). In most experiments, however, this condition is violated, since the
leads are typically configured to support just a small number of propagating modes (λF ≈ W ).
In another theoretical study, Sivan et al [287] have calculated the quasiparticle lifetime due to
e–e scattering in a disordered quantum dot, and predict a temperature-dependent variation of
the dephasing time that scales as τφ ∝ T −2. As indicated by the dotted line in figure 45, this
dependence is much stronger than that typically found in most experiments.

Similar to the behaviour found in disordered quantum wires, a saturation of the dephasing
time is observed in ballistic dots at very low temperatures (figure 45) [136,142,144,230,284].
Bird et al speculated that the saturation occurs once the thermal energy becomes comparable
to the average level spacing in the dot, indicating a transition to zero-dimensional dephasing
behaviour [142]. In a later experiment by Pivin et al, however, the saturation was studied
in a self-aligned GaAs/AlGaAs quantum dot (figure 46, inset) and was found to persist to
temperatures much higher than expected from the average level spacing [144]. These authors
also found that the saturated value of the dephasing time increased as the coupling between
the dot and the external reservoirs was reduced, and a similar effect has also been reported
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Figure 45. The variation of the phase-breaking time with temperature measured by Clarke et al.
Solid and open symbols are the results for two different dots. The dotted line shows the T −2

variation predicted for isolated quantum dots, while the dashed line indicates a T −1.2 dependence.
The dots were realized by the split-gate technique and had a lithographic linear dimension of
roughly 2 µm. This figure was reproduced with permission from [136]. Copyright 1995 by the
American Physical Society.

in split-gate dots of similar size [285]. While Pivin et al suggested that the change in the
dephasing time was associated with a change in electron number in the dot, the origin of this
enhancement of the dephasing time remains unexplained.

A proposed mechanism for the low-temperature saturation of the dephasing time in studies
of disordered quantum wires is the presence in experiment of extraneous RF radiation [41]. It
has been argued that, even at levels insufficient to produce electron heating, this radiation may
be sufficient to induce decoherence. In order to investigate whether such a mechanism may be
responsible for the saturation of the dephasing time found in ballistic quantum dots, Huibers
et al have studied the influence of deliberate microwave excitation on the value of the dephasing
time [230]. The crucial point to note here is that, according to random-matrix theory, the
variance of the conductance fluctuations is affected by both dephasing and thermal smearing,
while the amplitude of the zero-field magnetoresistance peak depends only on the presence
of dephasing [138, 139]. From comparing the temperature dependence of the conductance
fluctuations, and the averaged amplitude of the zero-field peak, to the corresponding variations
induced by the microwave irradiation, Huibers et al concluded that the effect of the microwave
excitation was identically equivalent to an increase in the electron temperature. On this basis
it was argued that the low-temperature saturation of the dephasing time cannot be due to
unintentional sources of electromagnetic radiation. From studying metal (Au) wires exposed
to an externally applied high-frequency noise, Webb et al [244] have similarly concluded that
electron heating precedes dephasing by high-frequency noise.

In addition to studies of equilibrium dephasing, investigations of the mechanisms for
decoherence have also been made in the non-equilibrium regime. In one report, Linke
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Figure 46. The left-hand panel shows the variation of the phase-breaking time with temperature
measured in the gated dot shown in the inset. This dot was realized using the metallic gate as a
self-aligning mask, which protected the underlying substrate during a subsequent chemical etch.
The lithographic dimension of the central dot is approximately 0.8 µm, and by applying a positive
voltage to the gate the conductance, and effective area, of the dot could be increased. The data in
the main panel show that this increase is accompanied by a reduction in the saturated value of the
dephasing time. The right-hand panel shows the variation of the saturated value of the dephasing
time with dot size (different symbols denote the results of measurements performed under different
illumination conditions). This figure was reproduced with permission from [144]. Copyright 1999
by the American Physical Society.

Figure 47. In this figure, the amplitude of the zero-field magnetoresistance peak is plotted versus
the variance of the conductance fluctuations, for a split-gate quantum dot under conditions of
different temperature or microwave excitation. This figure establishes that the effect of microwave
irradiation is indistinguishable from an increase in the electron temperature in the dot. The inset
further clarifies this point, showing magnetoresistance traces obtained under conditions of different
temperature and microwave irradiation. This figure was reproduced with permission from [230].
Copyright 1999 by the American Physical Society.
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et al [284] compared the influence of temperature and dc bias on the lineshape of the zero-
field magnetoresistance peak, and found a bias-dependent variation of the dephasing time
reminiscent of that observed in temperature-dependent studies. On the basis of this comparison
it was suggested that the effect of a given bias voltage (V ) could simply be understood to
increase the effective electron temperature to a value eV/kB . The resulting variation of the
dephasing time was found to be saturated for small voltage biases, but to decay as τφ ∝ V −2

at higher values—reminiscent of the theoretical predictions of Sivan et al [287]. In contrast,
Switkes et al [288] studied the influence of the measurement current on the electron temperature
in a much larger dot, and found this temperature to be determined by an equilibrium condition
where the energy supplied to the dot by hot electrons is balanced by loss to the reservoirs via
the point contact leads. More recently, Prasad et al [145] have used electron heating studies
to obtain the dephasing and energy relaxation times in arrays of coupled quantum dots. The
temperature-dependent variation of the dephasing time in these structures was found to be
very similar to that exhibited by single dots, while the energy relaxation time showed a very
different functional dependence to the dephasing time. The value of τE at low temperatures
was typically several orders of magnitude longer than the dephasing time, while little evidence
for saturation was found in its temperature dependence. These observations were taken to be
consistent with the notion that energy relaxation in these structures arises by e–ph scattering.

4.4. Dephasing in other ballistic systems

In this section, we consider the results of studies of dephasing in a variety of different ballistic,
and near-ballistic, systems. One of the few experimental investigations of dephasing in clean
two-dimensional electron systems was undertaken by Yacoby et al [267, 289], who utilized
a novel interferometer to study the dependence on DC bias of the phase-breaking length
(figure 48). The device was realized in the high-mobility two-dimensional electron gas of a
GaAs/AlGaAs heterojunction, and is illustrated in the inset to figure 48. By varying the voltage
applied to either of the centre finger gates, the phase difference of electrons arriving at the
voltage probe P from the emitter could be varied, giving rise to oscillations in the probe voltage
Vp. These phase oscillations were found to be suppressed with increasing DC emitter bias,
which effect was attributed to an associated reduction in electron coherence. This reduction
was found to be consistent with theoretical predictions for the dephasing rate, due to large-
energy-transfer, e–e, scattering in clean two-dimensional metals (equation (41)) [266, 290].
An important conclusion of this study is that, in contrast to the situation for dephasing due
to e–e scattering in dirty metals at low temperatures, dephasing of electrons in high-mobility
systems can occur via a single e–e scattering event. In such systems, this study shows that the
phase-breaking length can actually be shorter than the mean free path (Lφ < l), indicating that
dephasing events involve a transfer of energy of order the quasiparticle energy � [267]. While
this situation may, at first, seem counterintuitive, we point out that the mean free path is the
distance over which large-angle backscattering occurs, and is therefore not necessarily equal
to the mean distance travelled between any pair of scattering events. In high-mobility systems,
large-angle backscattering events are rare, which is presumably the situation that allows the
limit Lφ < l to be accessed.

An interesting example of a ballistic system is provided by the two-dimensional electron
gas at high magnetic fields, where current flow occurs via one-dimensional edge states (for an
extensive review see [70], for example). The edge states arise from the Fermi-level intersections
of successive Landau levels, whose energies diverge rapidly as the sample walls are approached,
and may be viewed as one-dimensional transport channels. One important length scale that
arises in the discussion of edge-state transport is the inter-edge-state equilibration length, the
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Figure 48. The inset to the upper panel shows a micrograph of the Young’s-slit interferometer used
to determine the dephasing time for ballistic two-dimensional electrons. Electrons are injected
from the emitter (E) and their transmission is detected by measuring the voltage (Vp) of the probe
P . The centre finger gates are used to modulate the interference of electron partial waves arriving at
the voltage probe, giving rise to the oscillations shown in the main figure. The lower panel shows
the variation of the phase-breaking length with the injection energy, for a number of different
experiments. The solid curve is the prediction of theory for a clean two-dimensional electron gas.
This figure was reproduced from [267]. Copyright 1991 by the American Physical Society.

distance over which two edge states, injected into a two-dimensional electron gas at different
electrochemical potentials, come into equilibrium with each other. At high magnetic fields,
where current is carried by just a few edge states, it is well known from experiment that
this length scale may exceed several hundred microns [291–294]. As has been pointed out
by Buttiker [295], however, this equilibration length is quite distinct from, and should not
be confused with, the phase-breaking length of the edge channels. An attempt to measure
this latter length scale directly in experiment has been performed by Machida et al [296],
who investigated the behaviour in the quantum-Hall transitions at high magnetic fields. They
derived an inelastic scattering length that shows no evidence for saturation down to the lowest
experimental temperatures, but which increases strongly with magnetic field. The results of
their analysis are shown in figure 49, from which it can be seen that the extrapolated value of
the inelastic scattering length exceeds 1 mm at 10 mK. We also note that the variation of the
inelastic scattering length implies a temperature-dependent timescale that varies as T −3. Such
a power-law variation is typical for e–ph scattering in three dimensions [7, 165], suggesting
that the length scale Machida et al derive from their experiment is related to energy relaxation,
rather than dephasing.
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Figure 49. The temperature dependence of the edge-state inelastic scattering length obtained in
the experiment of Machida et al [296]. This figure was reproduced with permission from [296].
Copyright 1996 by the American Physical Society.

Finally, studies of phase coherence have also been performed in near-ballistic Aharonov–
Bohm rings, in which current is carried by only a small number of one-dimensional
subbands [297, 298]. Liu et al studied the low-temperature magnetoresistance of shallow-
etched GaAs/AlGaAs rings, and extracted estimates for the phase-breaking length from the
decay in the harmonic content of their Aharonov–Bohm oscillations. The results of this
analysis suggest that the phase-breaking length in these near-ballistic structures increases
with magnetic field (figure 50), although it is unclear whether this behaviour is due to an
increase in the dephasing time, or a change in the nature of electron motion at high magnetic
fields [124, 125] (the same may also be said of the study of Machida et al discussed above).
Hansen et al [298] also considered the decay in the harmonic content of the Aharonov–Bohm
effect as a means to determine the temperature dependence of the dephasing time, which they
found to decay according to τφ ∝ T −1—reminiscent of the behaviour found in open quantum
dots [136,137,142]. In contrast to the behaviour exhibited by these latter structures, however,
Hansen et al found no evidence for saturation, at temperatures down to 0.3 K.

5. Conclusions

The electron dephasing time τφ(T , l) is a quantity of fundamental interest and importance
in metal and semiconductor mesoscopic structures. Both theoretical and experimental
investigations of τφ have advanced significantly over the last 20 years. These advances
have largely been due to the observation, in mesoscopic metals and semiconductors, of a
variety of quantum-interference phenomena. Among these phenomena, weak localization is
probably the most powerful probe of the electron dephasing times in mesoscopic structures.
The advances in our understanding of weak-localization effects have made feasible systematic
and quantitative measurements of different electron scattering times, such as the e–ph scattering
time τep, the e–e scattering time τee, the critical e–e scattering time τEE , the magnetic spin–
spin scattering time τs , the spin–orbit scattering time τso, and the ‘saturated’ dephasing time
τ 0
φ (=τφ(T → 0)). In the case of superconductors, the electron–superconducting-fluctuation
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Figure 50. The inferred dependence of the phase-breaking length on the magnetic field, obtained
in the experiment of Liu et al in their experimental studies of near-ballistic GaAs/AlGaAs rings.
This figure was reproduced from [297]. Copyright 1994 by the American Physical Society.

scattering time τe−sf can also be deduced from weak-localization studies. Despite great efforts
in theoretical calculations and experimental measurements of τφ , our current understanding of
the microscopic mechanisms for different dephasing times (except the Nyquist e–e scattering
time τee in one and two dimensions) is still incomplete. Experimentally, carefully designed low-
temperature magneto-transport measurements employing tailor-made structures, with sample
specifics varying over a wide range of disorder and dimensionality, would be highly desirable to
help with discerning the underlying physics of different electron dephasing times. Systematic
information on the dependence of τφ on temperature T and electron elastic mean free path l

will shed light on the underlying physics of the dephasing processes, helping with theoretical
formulation of the problem. In addition to normal-metal and semiconductor structures, weak-
localization study has also been applied to measure τφ in unconventional conductors, such as
quasicrystals [51], high-temperature superconductors (in the normal state) [53], and carbon
nanotubes [52].

In this review, we have surveyed the temperature and electron mean free path dependences
of 1/τep in disordered metals (section 3). We have discussed why a quadratic temperature
dependence of 1/τep in the dirty limit of qT l � 1 is often (but not always) found in
experiments [174], while the theoretically expected T 4 law is rarely seen in real materials [179]
(where qT ≈ kBT /h̄vs is the wavelength of thermal phonons, and vs is the sound velocity).
Since a T 4 temperature dependence of 1/τep is quite firmly established theoretically, the
consistent observations of a T 2 temperature dependence have recently led to a major revision
of the standard Pippard–Rammer–Schmid theory of the e–ph interaction in the presence of
strong impurity scattering [22, 33]. It is currently proposed that, in addition to the scattering
of electrons by the ‘vibrating’ potential considered in the standard theory, there might also
occur scattering of electrons by the ‘static’ potential [95, 96] due to heavy defects and/or
tough boundaries. Under such circumstances, a T 2 temperature dependence of 1/τep due
to transverse phonons can be expected. Depending on the degree of disorder (i.e. the value
of qT l), and also on the contribution of the scattering by the ‘static’ potential relative to the
‘vibrating’ potential, the temperature exponent p can take any value between 2 and 4. In
realistic measurements, covering a not-too-wide range of temperature, a (single) effective
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value of p can be assumed. As for the disorder dependence of τep, experimental results do
not support a universal dependence of 1/τep on the electron mean free path l, as is evident
from table 2. (Compared with the information of τφ on T , experimental information of τφ

on l has been extremely limited in the literature.) These results of different temperature and
disorder dependences indicate that the nature of the e–ph interaction in disordered metals is
fairly sensitive to the local material environment of a particular material system. In addition to
the possible existence of ‘static’-potential scattering, the phonon excitation spectrum might be
subtly affected by the microscopic quality of the disorder. Besides, while the existing theories
are formulated on the basis of a model with a spherical Fermi surface, the Fermi surfaces in
real alloys are often more complicated. Therefore, it is probably not entirely surprising that
(significant) discrepancies are often found between the theory and experiment.

While the theory predicts both the temperature and disorder dependences of 1/τep to be
extremely sensitive to the value of qT l [22,48,96], the experimental situation is less clear. An
inspection of the experimental results listed in tables 1 and 2 reveals hardly any systematic
variation of the temperature exponent p with qT l. This might imply that the quantity qT l alone
is not sufficient to determine the complete temperature (and disorder) behaviour of τep(T , l).
As just mentioned, the non-monotonic variation of p with qT l found in different measurements
might further be complicated by the possible coexistence of ‘vibrating’-potential and ‘static’-
potential scattering in real systems.

For e–ph scattering in the clean limit of qT l � 1, it is often taken for granted
that the T 3 temperature dependence of 1/τep is well established theoretically [157] and
experimentally [191]. However, in contrast to this long-standing belief, a close inspection
of tables 1 and 2 indicates that e–ph scattering in the clean limit has scarcely been explored
experimentally, since extremely few, if any, measurements have achieved a sufficiently large
value of qT l (� 1). Instead, in most of the previous measurements where a 1/τep ∝ T 3

dependence was reported, the e–ph interaction was more probably falling in the intermediate-
disorder regime (qT l ∼ 1), rather than in the clean limit. According to current theoretical
understanding [95, 96], the frequently observed T 3 temperature dependence of 1/τep might
correspond to a crossover from the clean-limit to the dirty-limit regime for transverse phonons.
Thus, it would be of interest to carry out measurements on samples having a large value of
qT l � 1 to test the T 3 temperature dependence due to the longitudinal phonons.

Taking into account both the temperature and disorder dependences, an e–ph scattering
rate 1/τep ∝ T 4l due to complete ‘vibrating’-potential scattering (the Pippard ineffectiveness
condition) [22, 33], and a scattering rate 1/τep ∝ T 2l−1 due to a partial contribution from
‘static’-potential scattering (the ‘breakdown’ of the Pippard ineffectiveness condition) [95,96],
have been theoretically predicted. These two different temperature and disorder variations
have been observed experimentally in different material systems (see table 2). However, there
are other systems, such as three-dimensional Au–Pd [94] and Ag–Pd [182] thick films, and
V100−xAlx alloys [183], and two-dimensional Sb [187] and Nb [186] thin films, in which an
abnormal 1/τep ∝ T 2l dependence was observed. Such a combined T 2l temperature and
disorder behaviour cannot be understood, even qualitatively, in terms of any current theories
for the e–ph interaction. This observation therefore deserves serious theoretical attention.

In addition to the e–ph scattering time τep, we have also discussed the role of critical
e–e scattering in very low-diffusivity conductors. In three-dimensional conductors near the
mobility edge, a dependence 1/τEE ∝ T is observed in experiments (figure 26). Moreover,
it is found that 1/τEE depends only very weakly, if at all, on the electron mean free path l

(figure 25(b)) [219,222]. This is due to the critical, as opposed to diffusive, current dynamics
in the presence of very strong impurity scattering [34]. Thus, insofar as inelastic electron
scattering in disordered conductors is concerned, the experimental picture suggests a crossover
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from e–ph dephasing to critical e–e dephasing, as the level of disorder greatly increases and
the system moves significantly toward the Anderson transition. The critical e–e scattering time
has not attracted much theoretical and experimental attention in the literature.

In low-dimensional systems, such as semiconductor heterojunctions and quantum wires,
we have seen that, in the range of temperature from approximately 1–30 K, the dominant source
of dephasing can clearly be attributed to e–e scattering [71]. At the low-temperature end of
this range, this scattering is predominantly quasielastic in nature, and phase randomization
results from the cumulative effect of a large number of scattering events, each involving a
small energy transfer. This so-called Nyquist mechanism is essentially equivalent to a process
in which the phase of the electron is gradually randomized by fluctuations in the background
electromagnetic field, generated by the thermal motion of the electron sea [35]. At higher
temperatures, the dephasing behaviour exhibits a crossover to e–e scattering involving large
energy transfer, and evidence for this process has been found to persist to temperatures as high
as 30 K [229]. It is interesting that, even at such elevated temperatures, e–e scattering still
dominates the dephasing, and no evidence is found for the role of e–ph scattering. This is, in
fact, consistent with the results of other studies. In the recent report by Prasad et al [145], for
example, estimates for the dephasing and the energy relaxation time were obtained in studies
of quantum-dot arrays. While the upper limit of measurement was limited to about 10 K in this
work, the authors were able to show that the dephasing time remained at least two orders of
magnitude smaller than the energy relaxation time, over the entire temperature range studied.

While the experimental results for dephasing in heterojunctions and semiconductor wires
can be well explained within the framework of accepted theories for e–e scattering (at least in the
regime where τφ does not exhibit a saturation), our understanding of the sources of dephasing
in semiconductor quantum dots is clearly less well established. A common feature of the few
experimental studies performed thus far is a dephasing rate that varies close to linearly in T , at
temperatures close to a kelvin [136,137,142]. It has previously been noted that such a variation
is similar to that predicted for the Nyquist mechanism in two dimensions, and Huibers et al have
argued that the observed temperature dependence of τφ can be well fitted with the predictions
of this theory [137]. The success of this approach relies on the introduction of a fitting
parameter, whose significance is not well understood at present, however. The suggestion of
other experiments [143,144] is that the dephasing time in these structures may depend strongly
on a number of additional factors, such as the strength of the coupling between the dot and
its reservoirs, the number of electrons in the dot, and its specific potential landscape. While
the number of theoretical studies of this problem continues to grow [286, 287, 299], further
effort is required to clarify the origins of dephasing in these structures. At the same time, new
experiments that are able to probe phase coherence directly, possibly in real time, are highly
desired.

In addition to the inelastic electron scattering times at finite temperatures, the behaviour
of the dephasing time near zero temperature, τ 0

φ = τφ(T → 0), has recently attracted vigorous
experimental and theoretical attention (figure 27). One of the central themes of this renewed
interest is concerned with whether τ 0

φ should reach a finite or an infinite value as T → 0. While
it is accepted that τ 0

φ should diverge if there exists only inelastic e–e and e–ph scattering, several
recent careful measurements, performed on different mesoscopic conductors, have found that
τ 0
φ depends only very weakly on temperature, if at all, when the temperature is sufficiently low.

These measurements have demonstrated that hot-electron effects, external microwave noise,
and very dilute magnetic impurities can at most play a subdominant role in the finite dephasing
of τ 0

φ as T → 0. Therefore, the microscopic origin(s) for the widely observed ‘saturation’
behaviour of τ 0

φ remain undetermined. In addition to the systematic studies on high-disorder
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three-dimensional polycrystalline metals [13, 246], combined measurements of the electron
energy exchange rate, dephasing rate, and Aharonov–Bohm oscillations will shed light on this
issue [38, 39, 254].

In this review, we have surveyed available proposals for the observed saturation of τ 0
φ

and have also discussed recent systematic efforts aimed at testing these proposals. We
have discussed several early measurements of τφ in different metals that deserve renewed
investigation with a focus on the temperature, disorder, and sample-geometry behaviour
of τ 0

φ . However, we have not attempted to discuss in detail any theoretical models
of the saturation behaviour of τ 0

φ . Various theoretical proposals have appeared in the
literature, including dynamical-defect-induced dephasing [14,15], zero-temperature ‘vacuum’
fluctuations [235, 238], coupling to gravity [234], phonon emission [232], wavefunction
collapse [236], and the role of sample-to-sample averaging [239], to list but a few (see,
for example, [242] and [300] for a brief summary). Theoretically, we note that quantitative
calculations of τ 0

φ could be rather difficult, because there are many different processes that
might cause dephasing at very low temperatures.

In addition to the case of disordered metals in the diffusive regime, a saturation of τ 0
φ

has also been observed in semiconductor, diffusive and quasi-ballistic, quantum wires, and
ballistic dots. In many regards, the features of this saturation appear reminiscent of that
found in dirty-metal wires. As we illustrate in table 4, the saturated value of the dephasing
time is typically of similar orders in semiconductor wires and dots, and is also of comparable
magnitude to that found in studies of dirty-metal wires and films (figure 27). The characteristic
temperature for onset of the saturation also varies widely in these structures—again reminiscent
of the behaviour found in dirty mesoscopic systems. There are some important differences
between the saturation characteristics in semiconductors and metals, however. In contrast to
the inverse scaling of τ 0

φ with the diffusion constant, found in dirty systems by Lin and co-
workers (figure 34), Noguchi et al have shown a more complicated behaviour in studies of
semiconductor wires. In their lowest-mobility (<3000 cm2 V−1 s−1) samples, evidence for a
decreasing τ 0

φ with increasing mobility was indeed found. At higher (>10 000 cm2 V−1 s−1)
mobilities, however, τ 0

φ was instead found to increase with increasing mobility [229]. Studies
of ballistic quantum dots have suggested that τ 0

φ also increases as the strength of the coupling
between the dot and its reservoirs is decreased, and this effect has been discussed in terms
of a suppression of the density of states for scattering [285], and a change in the number of
electrons in the dot [144]. It is therefore not completely clear that the origins of the saturation
are the same in these different systems (semiconductor wires and dots, metal wires and films).

Another important issue revealed in a number of studies is a sensitivity of the electron
dephasing to the microscopic quality of disorder. Ovadyahu [43] has studied the energy
relaxation time τE and dephasing time τφ at low temperatures in diffusive In2O3−x and
In2O3−x :Au thin films. He found that, although the Au doping is only �3% in In2O3−x :Au
thin films, the behaviour of τE and τφ in these two materials could be significantly different.
His observation suggests some very sensitive impurity-related, or defect-related, influence
on the nature of the electron scattering processes. A similar conclusion has been reached
by Fournier et al [53] from their study of underdoped Pr2−xCexCuO4 thin films. Bird and
co-workers [143] have studied semiconductor quantum dots and found that their dephasing
time can show significant dot-to-dot variations, in samples realized in materials with similar
mobilities. These measurements reflect a critical sensitivity of the dephasing processes to
disorder. Using Ag–Pd thick films prepared by RF and DC sputtering deposition, Zhong
et al [182] have found 1/τep = Aep(l)T 2 ∝ T 2l in both types of film. However, they also
observed that the variation of the strength of e–ph coupling Aep with the electron mean free
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path is a factor ∼2 higher in DC sputtered films than that in RF sputtered films. Indeed,
as discussed above, the e–ph scattering time is very sensitive to the microscopic quality of
disorder. These experiments clearly suggest that both τep and τ 0

φ are not only dependent on the
total level of disorder, but are also very sensitive to the microscopic quality of the disorder.
This can be particularly critical for mesoscopic devices, whose disorder profile is known to be
highly sample specific. This is a key point that needs to be taken into consideration in future
theories of electron dephasing times.

In our discussion of the e–ph scattering time τep in section 3, we have pointed out that three-
dimensional mesoscopic systems are more advantageous than lower-dimensional structures.
It is worth noting that, apart from the e–ph scattering time, the saturation problem can also
be better addressed in three-dimensional, rather than lower-dimensional, structures. While
in the case of lower-dimensional structures surface effects due to interfaces, substrates, and
paramagnetic oxidation are probably non-negligible, such effects are much less important
in bulk structures. In addition, one of the advantages of bulk samples in this problem is
the increased contrast between the ‘saturation’ and the strong dependence of τi(T ) in three
dimensions. In three dimensions, e–ph scattering dominates the inelastic scattering, resulting
in 1/τi ≈ 1/τep ∝ T p, with the temperature exponent p � 2. Such a temperature variation
is much stronger than the dominating p = 2/3 in one dimension and the p = 1 in two
dimensions. For example, inspection of the solid lines, which are drawn proportional to T −2

in figures 29(a) and 35(b), reveals that the measured τ 0
φ at 0.3 K is already approximately two

orders of magnitude lower than that extrapolated from the measured τep at a few kelvins. Such
a huge discrepancy is well outside any experimental uncertainty.

It has been 20 years since the theoretical and experimental realization of the weak-
localization effect, and related quantum-interference phenomena, in metal and semiconductor
mesoscopic structures. The richness of these effects, and their wide appearance in different
materials and dimensionalities, have also been well established. It is now also appreciated that
these effects provide the most powerful probe of electron dephasing processes in mesoscopic
and disordered systems. While several excellent reviews in this direction have appeared
in the literature over the past two decades, there have been very few in-depth surveys of
the experimental results and their physical implications for the various electron dephasing
times. We hope that the present work will therefore help to provide up-to-date, quantitative,
information on τφ(T , l), as well as those issues of high current interest (such as ‘the saturation
problem’ of τφ as T → 0).
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